Check sibling questions

Ex 6.3

Ex 6.3, 1 Deleted for CBSE Board 2023 Exams

Ex 6.3,2 Deleted for CBSE Board 2023 Exams You are here

Ex 6.3,3 Important Deleted for CBSE Board 2023 Exams

Ex 6.3,4 Deleted for CBSE Board 2023 Exams

Ex 6.3, 5 Important Deleted for CBSE Board 2023 Exams

Ex 6.3,6 Deleted for CBSE Board 2023 Exams

Ex 6.3,7 Important Deleted for CBSE Board 2023 Exams

Ex 6.3,8 Deleted for CBSE Board 2023 Exams

Ex 6.3,9 Important Deleted for CBSE Board 2023 Exams

Ex 6.3,10 Deleted for CBSE Board 2023 Exams

Ex 6.3,11 Important Deleted for CBSE Board 2023 Exams

Ex 6.3,12 Deleted for CBSE Board 2023 Exams

Ex 6.3,13 Deleted for CBSE Board 2023 Exams

Ex 6.3, 14 (i) Deleted for CBSE Board 2023 Exams

Ex 6.3, 14 (ii) Important Deleted for CBSE Board 2023 Exams

Ex 6.3, 14 (iii) Deleted for CBSE Board 2023 Exams

Ex 6.3, 14 (iv) Important Deleted for CBSE Board 2023 Exams

Ex 6.3, 14 (v) Deleted for CBSE Board 2023 Exams

Ex 6.3,15 Important Deleted for CBSE Board 2023 Exams

Ex 6.3,16 Deleted for CBSE Board 2023 Exams

Ex 6.3,17 Deleted for CBSE Board 2023 Exams

Ex 6.3,18 Important Deleted for CBSE Board 2023 Exams

Ex 6.3,19 Deleted for CBSE Board 2023 Exams

Ex 6.3,20 Deleted for CBSE Board 2023 Exams

Ex 6.3,21 Important Deleted for CBSE Board 2023 Exams

Ex 6.3,22 Deleted for CBSE Board 2023 Exams

Ex 6.3,23 Important Deleted for CBSE Board 2023 Exams

Ex 6.3,24 Important Deleted for CBSE Board 2023 Exams

Ex 6.3,25 Deleted for CBSE Board 2023 Exams

Ex 6.3,26 (MCQ) Important Deleted for CBSE Board 2023 Exams

Ex 6.3,27 (MCQ) Deleted for CBSE Board 2023 Exams

Ex 6.3, 2 - Find slope of tangent y = x-1/x-2, at x = 10

Ex 6.3,2 - Chapter 6 Class 12 Application of Derivatives - Part 2

Maths Crash Course - Live lectures + all videos + Real time Doubt solving!


Transcript

Ex 6.3, 2 Find the slope of the tangent to the curve 𝑦=(𝑥 − 1)/(𝑥 − 2) , 𝑥≠2 at 𝑥=10 𝑦=(𝑥 − 1)/(𝑥 − 2) 𝑥≠2 We know that Slope of tangent is 𝑑𝑦/𝑑𝑥 𝑑𝑦/𝑑𝑥= 𝑑((𝑥 − 1)/(𝑥 − 2))" " /𝑑𝑥 𝑑𝑦/𝑑𝑥=((𝑥 − 1)^′ (𝑥 − 2) − (𝑥 − 2)^′ (𝑥 − 1))/(𝑥 − 2)^2 Using Quotient Rule As (𝑢/𝑣)^′=(𝑢^′ 𝑣 −〖 𝑣〗^′ 𝑢)/𝑣^2 𝑑𝑦/𝑑𝑥=(1 (𝑥 − 2) −1 (𝑥 − 1))/(𝑥 − 2)^2 𝑑𝑦/𝑑𝑥=(𝑥 − 2 − 𝑥 + 1)/(𝑥 − 2)^2 So, 𝑑𝑦/𝑑𝑥=(− 1)/(𝑥 − 2)^2 Putting 𝑥=10 (𝑑𝑦/𝑑𝑥)_(𝑥 = 10)=(− 1)/(10 − 2)^2 =(− 1)/〖 8〗^2 =(− 1)/64 Hence Slope of a tangent at 𝑥 = 10 is (−𝟏)/𝟔𝟒

Ask a doubt (live)
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 12 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.