

Ex 6.3
Ex 6.3,2
Ex 6.3,3 Important
Ex 6.3,4
Ex 6.3, 5 Important
Ex 6.3,6
Ex 6.3,7 Important
Ex 6.3,8
Ex 6.3,9 Important You are here
Ex 6.3,10
Ex 6.3,11 Important
Ex 6.3,12
Ex 6.3,13
Ex 6.3, 14 (i)
Ex 6.3, 14 (ii) Important
Ex 6.3, 14 (iii)
Ex 6.3, 14 (iv) Important
Ex 6.3, 14 (v)
Ex 6.3,15 Important
Ex 6.3,16
Ex 6.3,17
Ex 6.3,18 Important
Ex 6.3,19
Ex 6.3,20
Ex 6.3,21 Important
Ex 6.3,22
Ex 6.3,23 Important
Ex 6.3,24 Important
Ex 6.3,25
Ex 6.3,26 (MCQ) Important
Ex 6.3,27 (MCQ)
Last updated at April 14, 2021 by Teachoo
Ex 6.3, 9 Find the point on the curve 𝑦=𝑥^3−11𝑥+5 at which the tangent is 𝑦=𝑥 −11.Equation of Curve is 𝑦=𝑥^3−11𝑥+5 We know that Slope of tangent is 𝑑𝑦/𝑑𝑥 𝑑𝑦/𝑑𝑥=𝑑(𝑥^3 − 11𝑥 + 5)/𝑑𝑥 𝑑𝑦/𝑑𝑥=〖3𝑥〗^2−11 Also, Given tangent is 𝑦=𝑥−12 Comparing with 𝑦=𝑚𝑥+𝑐 , when m is the Slope Slope of tangent =1 From (1) and (2) 𝑑𝑦/𝑑𝑥=1 3𝑥^2−11=1 3𝑥^2=1+11 3𝑥^2=12 𝑥^2=12/3 𝑥^2=4 𝑥=±2 When 𝒙=𝟐 𝑦=(2)^3−11(2)+5 𝑦=8−22+5 𝑦=− 9 So, Point is (2 , −9) When 𝒙=−𝟐 𝑦=(−2)^3−11(−2)+5 𝑦=− 8+22+5 𝑦=19 So, Point is (−2 , 19) Hence , Points (2 , −9) & (−2 , 19) But (–2, 19) does not satisfy line y = x – 11 As 19 ≠ –2 – 11 ∴ Only point is (2, –9)