# Ex 6.3, 14 (iv) - Chapter 6 Class 12 Application of Derivatives (Term 1)

Last updated at Aug. 19, 2021 by

Last updated at Aug. 19, 2021 by

Transcript

Ex 6.3, 14 Find the equations of the tangent and normal to the given curves at the indicated points: (iv) π¦=π₯2 ππ‘ (0, 0) Given Curve is π¦=π₯^2 Differentiating w.r.t.π₯ ππ¦/ππ₯=2π₯ We know that Slope of tangent is ππ¦/ππ₯ Given point is (0 , 0) Slope of tangent at (0 , 0) γππ¦/ππ₯βγ_((0 , 0) )=2(0) =0 We know that Slope of tangent Γ Slope if Normal =β1 0 Γ Slope if Normal =β1 Slope if Normal =(β1)/( 0) Equation of tangent at (0 , 0) & having Slope zero is (π¦β0)=0(π₯β0) We know that Equation of line at (π₯1 , π¦1)& having Slope m is π¦βπ¦1=π(π₯βπ₯1) Finding equation of tangent & normal Now Equation of line at (π₯1 , π¦1) & having Slope m is π¦βπ¦1=π(π₯βπ₯1) Equation of tangent at (0, 0) & Slope 0 is (π¦β0)=0(π₯β0) π¦β0=0 π=π Equation of Normal at (0, 0) & Slope (β1)/0 is (π¦β0)=1/0 (π₯β0) 0 Γ (π¦β0)=1(π₯β0) 0=π₯β0 π=π

Ex 6.3

Ex 6.3, 1

Ex 6.3,2

Ex 6.3,3 Important

Ex 6.3,4

Ex 6.3, 5 Important

Ex 6.3,6

Ex 6.3,7 Important

Ex 6.3,8

Ex 6.3,9 Important

Ex 6.3,10

Ex 6.3,11 Important

Ex 6.3,12

Ex 6.3,13

Ex 6.3, 14 (i)

Ex 6.3, 14 (ii) Important

Ex 6.3, 14 (iii)

Ex 6.3, 14 (iv) Important You are here

Ex 6.3, 14 (v)

Ex 6.3,15 Important

Ex 6.3,16

Ex 6.3,17

Ex 6.3,18 Important

Ex 6.3,19

Ex 6.3,20

Ex 6.3,21 Important

Ex 6.3,22

Ex 6.3,23 Important

Ex 6.3,24 Important

Ex 6.3,25

Ex 6.3,26 (MCQ) Important

Ex 6.3,27 (MCQ)

About the Author

Davneet Singh

Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 10 years. He provides courses for Maths and Science at Teachoo.