Question 23 - Tangents and Normals (using Differentiation) - Chapter 6 Class 12 Application of Derivatives
Last updated at April 16, 2024 by Teachoo
Tangents and Normals (using Differentiation)
Question 2 Deleted for CBSE Board 2025 Exams
Question 3 Important Deleted for CBSE Board 2025 Exams
Question 4 Deleted for CBSE Board 2025 Exams
Question 5 Important Deleted for CBSE Board 2025 Exams
Question 6 Deleted for CBSE Board 2025 Exams
Question 7 Important Deleted for CBSE Board 2025 Exams
Question 8 Deleted for CBSE Board 2025 Exams
Question 9 Important Deleted for CBSE Board 2025 Exams
Question 10 Deleted for CBSE Board 2025 Exams
Question 11 Important Deleted for CBSE Board 2025 Exams
Question 12 Deleted for CBSE Board 2025 Exams
Question 13 Deleted for CBSE Board 2025 Exams
Question 14 (i) Deleted for CBSE Board 2025 Exams
Question 14 (ii) Important Deleted for CBSE Board 2025 Exams
Question 14 (iii) Deleted for CBSE Board 2025 Exams
Question 14 (iv) Important Deleted for CBSE Board 2025 Exams
Question 14 (v) Deleted for CBSE Board 2025 Exams
Question 15 Important Deleted for CBSE Board 2025 Exams
Question 16 Deleted for CBSE Board 2025 Exams
Question 17 Deleted for CBSE Board 2025 Exams
Question 18 Important Deleted for CBSE Board 2025 Exams
Question 19 Deleted for CBSE Board 2025 Exams
Question 20 Deleted for CBSE Board 2025 Exams
Question 21 Important Deleted for CBSE Board 2025 Exams
Question 22 Deleted for CBSE Board 2025 Exams
Question 23 Important Deleted for CBSE Board 2025 Exams You are here
Question 24 Important Deleted for CBSE Board 2025 Exams
Question 25 Deleted for CBSE Board 2025 Exams
Question 26 (MCQ) Important Deleted for CBSE Board 2025 Exams
Question 27 (MCQ) Deleted for CBSE Board 2025 Exams
Tangents and Normals (using Differentiation)
Last updated at April 16, 2024 by Teachoo
Question 23 Prove that the curves 𝑥=𝑦2 & 𝑥𝑦=𝑘 cut at right angles if 8𝑘2 = 1We need to show that the curves cut at right angles Two Curve intersect at right angle if the tangents to the curves at the point of intersection are perpendicular to each other First we Calculate the point of intersection of Curve (1) & (2) 𝑥=𝑦2 𝑥𝑦=𝑘 Putting 𝑥=𝑦2 in (2) 𝑥𝑦=𝑘 𝑦^2 × 𝑦=𝑘 𝑦^3=𝑘 𝑦=𝑘^(1/3) Putting Value of 𝑦=𝑘^(1/3) in (1) 𝑥=(𝑘^(1/3) )^2 𝑥=𝑘^(2/3) Thus , Point of intersection of Curve is (𝒌^(𝟐/𝟑) ,𝒌^(𝟏/𝟑) ) We know that Slope of tangent to the Curve is 𝑑𝑦/𝑑𝑥 For 𝒙=𝒚^𝟐 Differentiating w.r.t.𝑥 𝑑𝑥/𝑑𝑥=𝑑(𝑦^2 )/𝑑𝑥 1=𝑑(𝑦^2 )/𝑑𝑥 × 𝑑𝑦/𝑑𝑦 1=𝑑(𝑦^2 )/𝑑𝑦 × 𝑑𝑦/𝑑𝑥 1=2𝑦 ×𝑑𝑦/𝑑𝑥 𝑑𝑦/𝑑𝑥=1/2𝑦 Slope of tangent at (𝑘^(2/3) , 𝑘^(1/3) ) is 〖𝑑𝑦/𝑑𝑥│〗_((𝑘^(2/3) , 𝑘^(1/3) ) )=1/2(𝑘^(1/3) ) =1/(2 𝑘^(1/3) ) For 𝒙𝒚=𝒌 Differentiating w.r.t 𝑑(𝑥𝑦)/𝑑𝑥=𝑑(𝑘)/𝑑𝑥 𝑑(𝑥𝑦)/𝑑𝑥=0 𝑑(𝑥)/𝑑𝑥 ×𝑦+𝑑𝑦/𝑑𝑥 ×𝑥=0 𝑦+𝑑𝑦/𝑑𝑥 𝑥=0 𝑑𝑦/𝑑𝑥=(−𝑦)/𝑥 Slope of tangent at (𝑘^(2/3) , 𝑘^(1/3) ) is 〖𝑑𝑦/𝑑𝑥│〗_((𝑘^(2/3) , 𝑘^(1/3) ) )=(−𝑘^(1/3))/𝑘^(2/3) =−〖 𝑘〗^(1/3 − 2/3) =−〖 𝑘〗^((− 1)/( 3) )=(−1)/𝑘^(1/3) We need to show that Curves cut at right Angle i.e. tangents of their Curves are perpendicular to each other . Now, (Slope of tangent to the Curve 𝑥=𝑦^2) × (Slope of tangent to the Curve 𝑥𝑦=𝑘) =−1 1/(2 𝑘^( 1/3) ) × (−1)/𝑘^( 1/3) =−1 We know that if two lines are perpendicular then Product of their Slopes = –1 1/(2 〖𝑘 〗^(1/3) ×𝑘^(1/3) )=−1 1/(2 𝑘^( 1/3 + 1/3) )=1 1/(2 𝑘^( 2/3) )=1 1=2𝑘^( 2/3) 2𝑘^( 2/3)=1 𝑘^( 2/3)=1/2 (𝑘^( 2/3) )^3=(1/2)^3 𝑘^2=1/8 〖𝟖𝒌〗^𝟐=𝟏 Hence Proved