Question 23 - Tangents and Normals (using Differentiation) - Chapter 6 Class 12 Application of Derivatives
Last updated at April 16, 2024 by Teachoo
Tangents and Normals (using Differentiation)
Question 2
Question 3 Important
Question 4
Question 5 Important
Question 6
Question 7 Important
Question 8
Question 9 Important
Question 10
Question 11 Important
Question 12
Question 13
Question 14 (i)
Question 14 (ii) Important
Question 14 (iii)
Question 14 (iv) Important
Question 14 (v)
Question 15 Important
Question 16
Question 17
Question 18 Important
Question 19
Question 20
Question 21 Important
Question 22
Question 23 Important You are here
Question 24 Important
Question 25
Question 26 (MCQ) Important
Question 27 (MCQ)
Tangents and Normals (using Differentiation)
Last updated at April 16, 2024 by Teachoo
Question 23 Prove that the curves 𝑥=𝑦2 & 𝑥𝑦=𝑘 cut at right angles if 8𝑘2 = 1We need to show that the curves cut at right angles Two Curve intersect at right angle if the tangents to the curves at the point of intersection are perpendicular to each other First we Calculate the point of intersection of Curve (1) & (2) 𝑥=𝑦2 𝑥𝑦=𝑘 Putting 𝑥=𝑦2 in (2) 𝑥𝑦=𝑘 𝑦^2 × 𝑦=𝑘 𝑦^3=𝑘 𝑦=𝑘^(1/3) Putting Value of 𝑦=𝑘^(1/3) in (1) 𝑥=(𝑘^(1/3) )^2 𝑥=𝑘^(2/3) Thus , Point of intersection of Curve is (𝒌^(𝟐/𝟑) ,𝒌^(𝟏/𝟑) ) We know that Slope of tangent to the Curve is 𝑑𝑦/𝑑𝑥 For 𝒙=𝒚^𝟐 Differentiating w.r.t.𝑥 𝑑𝑥/𝑑𝑥=𝑑(𝑦^2 )/𝑑𝑥 1=𝑑(𝑦^2 )/𝑑𝑥 × 𝑑𝑦/𝑑𝑦 1=𝑑(𝑦^2 )/𝑑𝑦 × 𝑑𝑦/𝑑𝑥 1=2𝑦 ×𝑑𝑦/𝑑𝑥 𝑑𝑦/𝑑𝑥=1/2𝑦 Slope of tangent at (𝑘^(2/3) , 𝑘^(1/3) ) is 〖𝑑𝑦/𝑑𝑥│〗_((𝑘^(2/3) , 𝑘^(1/3) ) )=1/2(𝑘^(1/3) ) =1/(2 𝑘^(1/3) ) For 𝒙𝒚=𝒌 Differentiating w.r.t 𝑑(𝑥𝑦)/𝑑𝑥=𝑑(𝑘)/𝑑𝑥 𝑑(𝑥𝑦)/𝑑𝑥=0 𝑑(𝑥)/𝑑𝑥 ×𝑦+𝑑𝑦/𝑑𝑥 ×𝑥=0 𝑦+𝑑𝑦/𝑑𝑥 𝑥=0 𝑑𝑦/𝑑𝑥=(−𝑦)/𝑥 Slope of tangent at (𝑘^(2/3) , 𝑘^(1/3) ) is 〖𝑑𝑦/𝑑𝑥│〗_((𝑘^(2/3) , 𝑘^(1/3) ) )=(−𝑘^(1/3))/𝑘^(2/3) =−〖 𝑘〗^(1/3 − 2/3) =−〖 𝑘〗^((− 1)/( 3) )=(−1)/𝑘^(1/3) We need to show that Curves cut at right Angle i.e. tangents of their Curves are perpendicular to each other . Now, (Slope of tangent to the Curve 𝑥=𝑦^2) × (Slope of tangent to the Curve 𝑥𝑦=𝑘) =−1 1/(2 𝑘^( 1/3) ) × (−1)/𝑘^( 1/3) =−1 We know that if two lines are perpendicular then Product of their Slopes = –1 1/(2 〖𝑘 〗^(1/3) ×𝑘^(1/3) )=−1 1/(2 𝑘^( 1/3 + 1/3) )=1 1/(2 𝑘^( 2/3) )=1 1=2𝑘^( 2/3) 2𝑘^( 2/3)=1 𝑘^( 2/3)=1/2 (𝑘^( 2/3) )^3=(1/2)^3 𝑘^2=1/8 〖𝟖𝒌〗^𝟐=𝟏 Hence Proved