Learn Intergation from Davneet Sir - Live lectures starting soon!

Ex 6.3

Ex 6.3, 1
Deleted for CBSE Board 2023 Exams

Ex 6.3,2 Deleted for CBSE Board 2023 Exams

Ex 6.3,3 Important Deleted for CBSE Board 2023 Exams You are here

Ex 6.3,4 Deleted for CBSE Board 2023 Exams

Ex 6.3, 5 Important Deleted for CBSE Board 2023 Exams

Ex 6.3,6 Deleted for CBSE Board 2023 Exams

Ex 6.3,7 Important Deleted for CBSE Board 2023 Exams

Ex 6.3,8 Deleted for CBSE Board 2023 Exams

Ex 6.3,9 Important Deleted for CBSE Board 2023 Exams

Ex 6.3,10 Deleted for CBSE Board 2023 Exams

Ex 6.3,11 Important Deleted for CBSE Board 2023 Exams

Ex 6.3,12 Deleted for CBSE Board 2023 Exams

Ex 6.3,13 Deleted for CBSE Board 2023 Exams

Ex 6.3, 14 (i) Deleted for CBSE Board 2023 Exams

Ex 6.3, 14 (ii) Important Deleted for CBSE Board 2023 Exams

Ex 6.3, 14 (iii) Deleted for CBSE Board 2023 Exams

Ex 6.3, 14 (iv) Important Deleted for CBSE Board 2023 Exams

Ex 6.3, 14 (v) Deleted for CBSE Board 2023 Exams

Ex 6.3,15 Important Deleted for CBSE Board 2023 Exams

Ex 6.3,16 Deleted for CBSE Board 2023 Exams

Ex 6.3,17 Deleted for CBSE Board 2023 Exams

Ex 6.3,18 Important Deleted for CBSE Board 2023 Exams

Ex 6.3,19 Deleted for CBSE Board 2023 Exams

Ex 6.3,20 Deleted for CBSE Board 2023 Exams

Ex 6.3,21 Important Deleted for CBSE Board 2023 Exams

Ex 6.3,22 Deleted for CBSE Board 2023 Exams

Ex 6.3,23 Important Deleted for CBSE Board 2023 Exams

Ex 6.3,24 Important Deleted for CBSE Board 2023 Exams

Ex 6.3,25 Deleted for CBSE Board 2023 Exams

Ex 6.3,26 (MCQ) Important Deleted for CBSE Board 2023 Exams

Ex 6.3,27 (MCQ) Deleted for CBSE Board 2023 Exams

Last updated at Aug. 19, 2021 by Teachoo

Ex 6.3, 3 Find the slope of the tangent to curve 𝑦=𝑥^3−𝑥+1 at the point whose 𝑥−𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 is 2. 𝑦=𝑥^3−𝑥+1 We know that slope of tangent is 𝑑𝑦/𝑑𝑥 𝑑𝑦/𝑑𝑥=𝑑(𝑥^3 − 𝑥 + 1)/𝑑𝑥 𝑑𝑦/𝑑𝑥=3𝑥^2−1+0 We need to find 𝑑𝑦/𝑑𝑥 at the point whose 𝑥−𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 is 2 Putting 𝑥=2 in 𝑑𝑦/𝑑𝑥 〖𝑑𝑦/𝑑𝑥│〗_(𝑥 = 2)=3(2)^2−1 =3 ×4−1 =12−1 =11 Hence slope of a tangent is 11