Question 18 - Tangents and Normals (using Differentiation) - Chapter 6 Class 12 Application of Derivatives
Last updated at Dec. 16, 2024 by Teachoo
Tangents and Normals (using Differentiation)
Question 2
Question 3 Important
Question 4
Question 5 Important
Question 6
Question 7 Important
Question 8
Question 9 Important
Question 10
Question 11 Important
Question 12
Question 13
Question 14 (i)
Question 14 (ii) Important
Question 14 (iii)
Question 14 (iv) Important
Question 14 (v)
Question 15 Important
Question 16
Question 17
Question 18 Important You are here
Question 19
Question 20
Question 21 Important
Question 22
Question 23 Important
Question 24 Important
Question 25
Question 26 (MCQ) Important
Question 27 (MCQ)
Tangents and Normals (using Differentiation)
Last updated at Dec. 16, 2024 by Teachoo
Question 18 For the curve 𝑦=4𝑥3 −2𝑥5, find all the points at which the tangent passes through the origin.Let (ℎ , 𝑘) be the Required Point on the Curve at which tangent is to be taken Given Curve is 𝑦=4𝑥^3−2𝑥^5 Since Point (ℎ , 𝑘) is on the Curve ⇒ (ℎ , 𝑘) will satisfy the Equation of Curve Putting 𝑥=ℎ , 𝑦=𝑘 𝑘=4ℎ^3−2ℎ^5 We know that Slope of tangent to the Curve is 𝑑𝑦/𝑑𝑥 𝑦=4𝑥^3−2𝑥^5 Differentiating w.r.t. 𝑥 𝑑𝑦/𝑑𝑥=𝑑(4𝑥^(3 )− 2𝑥^5 )/𝑑𝑥 𝑑𝑦/𝑑𝑥=12𝑥^2−10𝑥^4 Since tangent is taken from (ℎ , 𝑘) Slope of tangent at (ℎ, 𝑘) is 〖𝑑𝑦/𝑑𝑥│〗_((ℎ, 𝑘) )=12ℎ^2−10ℎ^4 Now, Equation of tangent at (ℎ , 𝑘) & having Slope 12ℎ^2−10ℎ^4 is (𝑦−𝑘)=12ℎ^2−10ℎ^4 (𝑥−ℎ) Also, Given tangent passes through Origin ∴ (0 , 0) will satisfies the Equation of tangent Putting x = 0, y = 0 in equation (0 −𝑘)=12ℎ^2−10ℎ^4 (0−ℎ) −𝑘=12ℎ^2−10ℎ^4 (−ℎ) −𝑘=−12ℎ^3+10ℎ^5 We know that Equation of line at (𝑥1 , 𝑦1)& having Slope m is 𝑦−𝑦1=𝑚(𝑥−𝑥1) Now our Equations are 𝑘=4ℎ^3−2ℎ^5 −𝑘=−12ℎ^3+10ℎ^5 Adding (1) and (2) 𝑘−𝑘=4ℎ^3−2ℎ^5+(−12ℎ^3+10ℎ^5 ) 0=4ℎ^3−12ℎ^3−2ℎ^5+10ℎ^5 0=− 8ℎ^3+8ℎ^5 − 8ℎ^3+8ℎ^5=0 − 8ℎ^3 (1−ℎ^2 )=0 − 8ℎ^3=0 ℎ=0 1−ℎ^2=0 ℎ^2=1 ℎ=±1 When 𝒉=𝟎 𝑘=4ℎ^3−2ℎ^5 𝑘=4(0)^3−2(0)^5 𝑘=0−0 𝑘=0 Point is (𝟎 , 𝟎) When 𝒉=𝟏 𝑘=4ℎ^3−2ℎ^5 𝑘=4(1)^3−2(1)^5 𝑘=4−2 𝑘=2 Point is (𝟏 , 𝟐) When 𝒉=−𝟏 𝑘=4ℎ^3−2ℎ^5 𝑘=4(−1)^3−2(−1)^5 𝑘=−4−(−2) 𝑘=−2 Point is (−𝟏 , −𝟐) Hence the Required point on the Curve are (0 , 0), (1 , 2) & (−1 , −2)