Question 22 - Tangents and Normals (using Differentiation) - Chapter 6 Class 12 Application of Derivatives
Last updated at April 16, 2024 by Teachoo
Tangents and Normals (using Differentiation)
Question 2 Deleted for CBSE Board 2025 Exams
Question 3 Important Deleted for CBSE Board 2025 Exams
Question 4 Deleted for CBSE Board 2025 Exams
Question 5 Important Deleted for CBSE Board 2025 Exams
Question 6 Deleted for CBSE Board 2025 Exams
Question 7 Important Deleted for CBSE Board 2025 Exams
Question 8 Deleted for CBSE Board 2025 Exams
Question 9 Important Deleted for CBSE Board 2025 Exams
Question 10 Deleted for CBSE Board 2025 Exams
Question 11 Important Deleted for CBSE Board 2025 Exams
Question 12 Deleted for CBSE Board 2025 Exams
Question 13 Deleted for CBSE Board 2025 Exams
Question 14 (i) Deleted for CBSE Board 2025 Exams
Question 14 (ii) Important Deleted for CBSE Board 2025 Exams
Question 14 (iii) Deleted for CBSE Board 2025 Exams
Question 14 (iv) Important Deleted for CBSE Board 2025 Exams
Question 14 (v) Deleted for CBSE Board 2025 Exams
Question 15 Important Deleted for CBSE Board 2025 Exams
Question 16 Deleted for CBSE Board 2025 Exams
Question 17 Deleted for CBSE Board 2025 Exams
Question 18 Important Deleted for CBSE Board 2025 Exams
Question 19 Deleted for CBSE Board 2025 Exams
Question 20 Deleted for CBSE Board 2025 Exams
Question 21 Important Deleted for CBSE Board 2025 Exams
Question 22 Deleted for CBSE Board 2025 Exams You are here
Question 23 Important Deleted for CBSE Board 2025 Exams
Question 24 Important Deleted for CBSE Board 2025 Exams
Question 25 Deleted for CBSE Board 2025 Exams
Question 26 (MCQ) Important Deleted for CBSE Board 2025 Exams
Question 27 (MCQ) Deleted for CBSE Board 2025 Exams
Tangents and Normals (using Differentiation)
Last updated at April 16, 2024 by Teachoo
Question 22 Find the equations of the tangent and normal to the parabola ๐ฆ^2=4๐๐ฅ at the point (๐๐ก2, 2๐๐ก).Given Curve is ๐ฆ^2=4๐๐ฅ We need to find equation of tangent & Normal at (๐๐ก2, 2๐๐ก) We know that Slope of tangent is ๐๐ฆ/๐๐ฅ ๐ฆ^2=4๐๐ฅ Differentiating w.r.t.๐ฅ ๐(๐ฆ^2 )/๐๐ฅ=๐(4๐๐ฅ)/๐๐ฅ ๐(๐ฆ^2 )/๐๐ฅ ร ๐๐ฆ/๐๐ฆ=4๐ ๐(๐ฅ)/๐๐ฅ ๐(๐ฆ^2 )/๐๐ฆ ร ๐๐ฆ/๐๐ฅ=4๐ 2๐ฆ ร๐๐ฆ/๐๐ฅ=4๐ ๐๐ฆ/๐๐ฅ=4๐/2๐ฆ Slope of tangent at (๐๐ก^2 , 2๐๐ก) is ใ๐๐ฆ/๐๐ฅโใ_((๐๐ก^2 , 2๐๐ก) )=4๐/2(2๐๐ก) =4๐/4๐๐ก=1/๐ก Also we know that Slope of tangent ร Slope of Normal =โ1 1/๐กร Slope of Normal =โ1 Slope of Normal =โ๐ก Finding equation of tangent & normal We know that Equation of line at (๐ฅ1 , ๐ฆ1)& having Slope m is ๐ฆโ๐ฆ1=๐(๐ฅโ๐ฅ1) Equation of tangent at (๐๐^๐ , ๐๐๐) & having Slope ๐/๐ is (๐ฆโ2๐๐ก)=1/๐ก (๐ฅโ๐๐ก^2 ) ๐ก(๐ฆโ2๐๐ก)=๐ฅโ๐๐ก^2 ๐ก๐ฆโ2๐๐ก^2=๐ฅโ๐๐ก^2 ๐ก๐ฆ=๐ฅโ๐๐ก^2+2๐๐ก^2 ๐๐=๐+๐๐^๐ Equation of Normal at (๐๐^๐ , ๐๐๐) & having Slope โt is (๐ฆโ2๐๐ก)=โ๐ก(๐ฅโ๐๐ก^2 ) ๐ฆโ2๐๐ก=โ๐ก๐ฅ+๐๐ก^3 ๐=โ๐๐+๐๐๐+๐๐^๐