
Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Ex 3.3
Ex 3.3, 2 Important
Ex 3.3, 3 Important
Ex 3.3, 4
Ex 3.3, 5 (i) Important
Ex 3.3, 5 (ii)
Ex 3.3, 6 Important
Ex 3.3, 7
Ex 3.3, 8 Important
Ex 3.3, 9 Important
Ex 3.3, 10
Ex 3.3, 11 Important
Ex 3.3, 12
Ex 3.3, 13 Important
Ex 3.3, 14
Ex 3.3, 15
Ex 3.3, 16 Important
Ex 3.3, 17
Ex 3.3, 18 Important
Ex 3.3, 19
Ex 3.3, 20
Ex 3.3, 21 Important
Ex 3.3, 22 Important
Ex 3.3, 23 Important
Ex 3.3, 24
Ex 3.3, 25 You are here
Last updated at June 22, 2023 by Teachoo
Ex 3.3, 25 Prove that: cos 6𝑥 = 32 cos6 𝑥 – 48 cos4 𝑥 + 18 cos2 𝑥 – 1 Solving L.H.S. cos 6x = 2(cos 3x)2 – 1 = 2 ( 4 cos3 x – 3 cos x)2 – 1 We know that cos 2x = 2 cos2 x – 1 Replacing by 3x cos 2(3x) = 2 cos2 (3x) -1 cos 6x = 2 cos2 3x -1 Using (a – b)2 = a2 + b2 – 2ab = 2 [(4 cos3 x)2 + (3 cos x )2 – 2 (4 cos3 x) × (3 cos x)] – 1 = 2 [(16 cos6x + 9 cos2 x – 24 cos4x)] – 1 = 2 × 16 cos6x + 2 × 9 cos2 x – 2 × 24 cos4x – 1 = 32 cos6x – 48 cos4x + 18 cos2x – 1 = R.H.S. Hence L.H.S. = R.H.S Hence proved