
Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Ex 3.3
Ex 3.3, 2 Important
Ex 3.3, 3 Important
Ex 3.3, 4
Ex 3.3, 5 (i) Important
Ex 3.3, 5 (ii)
Ex 3.3, 6 Important
Ex 3.3, 7
Ex 3.3, 8 Important
Ex 3.3, 9 Important
Ex 3.3, 10 You are here
Ex 3.3, 11 Important
Ex 3.3, 12
Ex 3.3, 13 Important
Ex 3.3, 14
Ex 3.3, 15
Ex 3.3, 16 Important
Ex 3.3, 17
Ex 3.3, 18 Important
Ex 3.3, 19
Ex 3.3, 20
Ex 3.3, 21 Important
Ex 3.3, 22 Important
Ex 3.3, 23 Important
Ex 3.3, 24
Ex 3.3, 25
Last updated at June 22, 2023 by Teachoo
Ex 3.3, 10 Prove that sin(𝑛 + 1)𝑥 sin(𝑛 + 2)𝑥+cos(𝑛 + 1)𝑥 cos(𝑛 + 2)𝑥=cos𝑥 Solving L.H.S. We know that cos ( A – B) = cos A cos B + sin A sin B Here, A = (n + 1)x ,B = (n + 2)x Hence sin(𝑛+1)𝑥 sin(𝑛+2)𝑥+cos(𝑛 + 1)𝑥 cos(𝑛 + 2)𝑥 = cos [ (n + 1)x – (n + 2)x ] = cos [ nx + x – nx – 2x ] = cos [ nx – nx + x – 2 x ] = cos (0 – x ) = cos (– x) = cos x = R.H.S. Hence , L.H.S. = R.H.S. Hence proved