

Get live Maths 1-on-1 Classs - Class 6 to 12
Ex 3.3
Ex 3.3, 2 Important
Ex 3.3, 3 Important
Ex 3.3, 4
Ex 3.3, 5 (i) Important
Ex 3.3, 5 (ii)
Ex 3.3, 6 Important
Ex 3.3, 7 You are here
Ex 3.3, 8 Important
Ex 3.3, 9 Important
Ex 3.3, 10
Ex 3.3, 11 Important
Ex 3.3, 12
Ex 3.3, 13 Important
Ex 3.3, 14
Ex 3.3, 15
Ex 3.3, 16 Important
Ex 3.3, 17
Ex 3.3, 18 Important
Ex 3.3, 19
Ex 3.3, 20
Ex 3.3, 21 Important
Ex 3.3, 22 Important
Ex 3.3, 23 Important
Ex 3.3, 24
Ex 3.3, 25
Ex 3.3
Last updated at March 22, 2023 by Teachoo
Ex 3.3, 7 Prove that: (tan"(" π/4 " + " π₯")" )/(tan"(" Ο/4 " β " π₯")" ) = ((1+ tan" " π₯)/(1β tan" " π₯))^2 Solving L.H.S. (tanβ‘ (π/4 + π₯) )/tanβ‘(π/4 β π₯) Calculating L.H.S tanβ‘γ(π/4 + π₯)γ/tanβ‘γ( π/4 βπ₯)γ = ((1 + π‘ππβ‘π₯)/(1β π‘ππβ‘π₯ ))/((1 β tanβ‘x)/(1 + tanβ‘x )) = (1 + π‘ππβ‘π₯)/(1β π‘ππβ‘π₯ ) Γ (1 + π‘ππβ‘π₯)/(1β π‘ππβ‘π₯ ) = (1 + π‘ππβ‘π₯ )2/((1β π‘ππβ‘γπ₯)2γ ) = R.H.S Hence proved