Ex 3.3
Ex 3.3, 2 Important
Ex 3.3, 3 Important
Ex 3.3, 4
Ex 3.3, 5 (i) Important
Ex 3.3, 5 (ii)
Ex 3.3, 6 Important
Ex 3.3, 7 You are here
Ex 3.3, 8 Important
Ex 3.3, 9 Important
Ex 3.3, 10
Ex 3.3, 11 Important
Ex 3.3, 12
Ex 3.3, 13 Important
Ex 3.3, 14
Ex 3.3, 15
Ex 3.3, 16 Important
Ex 3.3, 17
Ex 3.3, 18 Important
Ex 3.3, 19
Ex 3.3, 20
Ex 3.3, 21 Important
Ex 3.3, 22 Important
Ex 3.3, 23 Important
Ex 3.3, 24
Ex 3.3, 25
Last updated at April 16, 2024 by Teachoo
Ex 3.3, 7 Prove that: (tan"(" π/4 " + " π₯")" )/(tan"(" Ο/4 " β " π₯")" ) = ((1+ tan" " π₯)/(1β tan" " π₯))^2 Solving L.H.S. (tanβ‘ (π/4 + π₯) )/tanβ‘(π/4 β π₯) Numerator Numerator is of form tan (x + y) tan (x + y) = (π‘ππ" " π₯ + π‘ππβ‘π¦)/(1 β π‘ππ π₯ π‘ππβ‘π¦ ) Putting x = π /π , y = x tan (Ο/4 + x) = (tan Ο/4 + tanβ‘x)/(1β tan Ο/4 tanβ‘π₯ ) Now, tan π/4 = tan 45Β° = 1 tan (π /π + x) = (π + πππβ‘π)/(πβ πππβ‘π ) Denominator Denominator is of form tan (x β y) tan (x β y) = (π‘ππ" " π₯ β π‘ππβ‘π¦)/(1 + π‘ππ π₯ π‘ππβ‘π¦ ) Putting x = π/4 , y = x tan (Ο/4 β x) = (tan Ο/4 β tanβ‘x)/(1 + tan Ο/4 tanβ‘π₯ ) Now, tan π/4 = tan 45Β° = 1 tan (π /π β x) = (π β πππβ‘π)/(π + πππβ‘π ) Solving L.H.S tanβ‘(π/4 + π₯)/tanβ‘( π/4 βπ₯) = ((π + πππβ‘π)/(πβ πππβ‘π ))/((π β πππβ‘π)/(π + πππβ‘π )) = (1 + π‘ππβ‘π₯)/(1β π‘ππβ‘π₯ ) Γ (1 + π‘ππβ‘π₯)/(1β π‘ππβ‘π₯ ) = (π + πππβ‘π )π/(πβ πππβ‘π )^π = R.H.S Hence proved