Last updated at Dec. 8, 2016 by Teachoo
Transcript
Ex 3.3, 7 Prove that: (tan"(" π/4 " + " π₯")" )/(tan"(" Ο/4 " β " π₯")" ) = ((1+ tan" " π₯)/(1β tan" " π₯))^2 Solving L.H.S. (tanβ‘ (π/4 + π₯) )/tanβ‘(π/4 β π₯) Calculating L.H.S tanβ‘γ(π/4 + π₯)γ/tanβ‘γ( π/4 βπ₯)γ = ((1 + π‘ππβ‘π₯)/(1β π‘ππβ‘π₯ ))/((1 β tanβ‘x)/(1 + tanβ‘x )) = (1 + π‘ππβ‘π₯)/(1β π‘ππβ‘π₯ ) Γ (1 + π‘ππβ‘π₯)/(1β π‘ππβ‘π₯ ) = (1 + π‘ππβ‘π₯ )2/((1β π‘ππβ‘γπ₯)2γ ) = R.H.S Hence proved
Ex 3.3
Ex 3.3, 2 Important
Ex 3.3, 3 Important
Ex 3.3, 4
Ex 3.3, 5 (i) Important
Ex 3.3, 5 (ii)
Ex 3.3, 6 Important
Ex 3.3, 7 You are here
Ex 3.3, 8 Important
Ex 3.3, 9 Important
Ex 3.3, 10
Ex 3.3, 11 Important
Ex 3.3, 12
Ex 3.3, 13 Important
Ex 3.3, 14
Ex 3.3, 15
Ex 3.3, 16 Important
Ex 3.3, 17
Ex 3.3, 18 Important
Ex 3.3, 19
Ex 3.3, 20
Ex 3.3, 21 Important
Ex 3.3, 22 Important
Ex 3.3, 23 Important
Ex 3.3, 24
Ex 3.3, 25
Ex 3.3
About the Author