Slide1.JPG

Slide2.JPG
Slide3.JPG

Something went wrong!

The video couldn't load due to a technical hiccup.
But don't worry — our team is already on it, and we're working hard to get it back up ASAP.

Thanks for bearing with us!

Something went wrong!

The video couldn't load due to a technical hiccup.
But don't worry — our team is already on it, and we're working hard to get it back up ASAP.

Thanks for bearing with us!

Share on WhatsApp

Transcript

Misc 1 Prove that: 2cos 𝜋/13 cos 9𝜋/13 + cos 3𝜋/13 + cos 5𝜋/13 = 0 Solving L.H.S 2cos 𝜋/13 cos 9𝜋/13 + cos 3𝜋/13 + cos 5𝜋/13 = ("cos " 𝟏𝟎𝝅/𝟏𝟑 " + cos " 𝟖𝝅/𝟏𝟑) + cos 3𝜋/13 + cos 5𝜋/13 We know that 2 cos x cos y = cos (x + y) + cos (x – y) Putting x = 9𝜋/13 and y = 𝜋/13 2cos 𝟗𝝅/𝟏𝟑 cos 𝝅/𝟏𝟑 = cos (9𝜋/13 " + " 𝜋/13) + cos(9𝜋/13 " + " 𝜋/13) = cos (𝟏𝟎𝝅/𝟏𝟑) + cos ((𝟖 𝝅)/𝟏𝟑) = ("cos " 10𝜋/13 " + cos " 3𝜋/13) + ("cos " 8𝜋/13 " + cos " 5𝜋/13) = ("2 cos " ((10𝜋/13 + 3𝜋/13)/2)" . cos " ((10𝜋/13 − 3𝜋/13)/2)) + ("2cos " ((8𝜋/13 + 5𝜋/13)/2)" . cos " ((8𝜋/13 − 5𝜋/13)/2)) = ("2 cos " ((𝟏𝟑𝝅/𝟏𝟑)/𝟐)" . cos " ((𝟕𝝅/𝟏𝟑)/𝟐)) + ("2 cos " (𝟏𝟑𝝅/𝟏𝟑)/𝟐 " . cos " (𝟑𝝅/𝟏𝟑)/𝟐) = ("2 cos " 𝜋/2 " . cos " 7𝜋/26) + ("2 cos " 𝜋/2 " . cos " 3𝜋/26) = 2 cos 𝝅/𝟐 ("cos " 7𝜋/26 " + cos " 3𝜋/26) = 2 × 0 ("cos " 7𝜋/26 " + cos " 3𝜋/26) = 0 = R.H.S. Hence L.H.S. = R.H.S. Hence proved

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo