

Get live Maths 1-on-1 Classs - Class 6 to 12
Ex 3.3
Ex 3.3, 2 Important
Ex 3.3, 3 Important
Ex 3.3, 4
Ex 3.3, 5 (i) Important
Ex 3.3, 5 (ii)
Ex 3.3, 6 Important
Ex 3.3, 7
Ex 3.3, 8 Important
Ex 3.3, 9 Important
Ex 3.3, 10
Ex 3.3, 11 Important You are here
Ex 3.3, 12
Ex 3.3, 13 Important
Ex 3.3, 14
Ex 3.3, 15
Ex 3.3, 16 Important
Ex 3.3, 17
Ex 3.3, 18 Important
Ex 3.3, 19
Ex 3.3, 20
Ex 3.3, 21 Important
Ex 3.3, 22 Important
Ex 3.3, 23 Important
Ex 3.3, 24
Ex 3.3, 25
Ex 3.3
Last updated at March 22, 2023 by Teachoo
Ex 3.3, 11 Prove that cos (3π/4+x) – cos (3π/4−x) = –√2 sin x Taking L.H.S. cos (3π/4+x) – cos (3π/4−x) = –2 sin (((3π/4 + x) + (3π/4 − x))/2) sin (((3π/4 + x) − (3π/4 − x))/2) = –2 sin (((3π/4 + 3π/4) + (𝑥 − 𝑥))/2) sin ((3π/4 + x − 3π/4 + x)/2) Using cos x – cos y = –2 sin (𝑥 + 𝑦)/2 sin (𝑥 − 𝑦)/2 Putting x = 3𝜋/4 + x & y = 3𝜋/4 – x = –2 sin (((3π/2 ))/2) sin (2x/2) = –2 sin (3π/4) sin 𝑥 Putting π = 180° = –2 sin ((3 × 180°)/4) sin 𝑥 = –2 sin ("135°" ) sin 𝑥 = –2 sin (180"°" – 45"°") sin x = –2 sin 45° sin x = –2 × 1/√2 × sin x = −√2 × √2 × 1/√2 × sin x (sin (180 – 𝜃) = sin 𝜃) = −√2 sin x = R.H.S. Hence proved