
Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Ex 3.3
Ex 3.3, 2 Important
Ex 3.3, 3 Important
Ex 3.3, 4
Ex 3.3, 5 (i) Important
Ex 3.3, 5 (ii)
Ex 3.3, 6 Important
Ex 3.3, 7
Ex 3.3, 8 Important
Ex 3.3, 9 Important
Ex 3.3, 10
Ex 3.3, 11 Important
Ex 3.3, 12
Ex 3.3, 13 Important
Ex 3.3, 14 You are here
Ex 3.3, 15
Ex 3.3, 16 Important
Ex 3.3, 17
Ex 3.3, 18 Important
Ex 3.3, 19
Ex 3.3, 20
Ex 3.3, 21 Important
Ex 3.3, 22 Important
Ex 3.3, 23 Important
Ex 3.3, 24
Ex 3.3, 25
Last updated at June 22, 2023 by Teachoo
Ex 3.3, 14 Prove that sin 2x + 2sin 4x + sin 6x = 4cos2 x sin 4x Solving L.H.S. sin 2x + 2sin 4x + sin 6x = (sin 6x + sin 2x) + 2sin 4x = 2 sin ((6𝑥 + 2𝑥)/2) cos ((6𝑥 − 2𝑥)/2) + 2sin 4x = 2 sin (8𝑥/2) cos (4𝑥/2) + 2sin 4x = 2 sin 4x cos 2x + 2sin 4x = 2 sin 4x (cos 2x + 1) = 2 sin 4x ( 2cos2x – 1 + 1) = 2 sin 4x (2cos2x) = 4 sin 4x cos2x = R.H.S Hence L.H.S = R.H.S Hence proved