Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class

Ex 3.3

Ex 3.3, 1
Important

Ex 3.3, 2 Important

Ex 3.3, 3 Important

Ex 3.3, 4

Ex 3.3, 5 (i) Important

Ex 3.3, 5 (ii) You are here

Ex 3.3, 6 Important

Ex 3.3, 7

Ex 3.3, 8 Important

Ex 3.3, 9 Important

Ex 3.3, 10

Ex 3.3, 11 Important

Ex 3.3, 12

Ex 3.3, 13 Important

Ex 3.3, 14

Ex 3.3, 15

Ex 3.3, 16 Important

Ex 3.3, 17

Ex 3.3, 18 Important

Ex 3.3, 19

Ex 3.3, 20

Ex 3.3, 21 Important

Ex 3.3, 22 Important

Ex 3.3, 23 Important

Ex 3.3, 24

Ex 3.3, 25

Chapter 3 Class 11 Trigonometric Functions

Serial order wise

Last updated at May 29, 2023 by Teachoo

Ex 3.3, 5 Find the value of: (ii) tan 15° tan 15° = tan (45° – 30°) = (tan 45° − 〖 tan〗〖30°〗)/(1 + tan 45°tan〖30°〗 ) = (1 − 1/√3)/(1 + 1 × 1/√3) Using tan (x − y) = (𝑡𝑎𝑛𝑥 − 𝑡𝑎𝑛𝑦)/(1+𝑡𝑎𝑛 𝑥 𝑡𝑎𝑛𝑦 ) Putting x = 45° and y = 30° = ((√3 − 1" " )/√3)/((√3 + 1" " )/√3) = (√3 −1)/√3 × √3/(√3 + 1) = (√3 − 1)/(√3 + 1) Rationalizing = (√3 − 1)/(√3 + 1) × (√3 − 1)/(√3 − 1) = (√3 − 1)2/(√3 + 1)(√3 − 1) Using (a – b)2 = a2 + b2 – 2ab = ((√3)2 + 12 − 2" " × √3 × 1)/(√3 + 1)(√3 − 1) = (3 + 1 − 2√3)/(√(3 )+ 1)(√3 − 1) Using (a – b ) (a + b) = a2 – b2 = (4 − 2√3)/((√3)2 − (1)2) = (4 − 2√3)/(3 − 1) = (2 (2 − √(3 )))/2 = 2 – √3 Hence, tan 15° = 2 – √𝟑