Maths Crash Course - Live lectures + all videos + Real time Doubt solving!
Ex 3.3
Ex 3.3, 2 Important
Ex 3.3, 3 Important
Ex 3.3, 4
Ex 3.3, 5 (i) Important
Ex 3.3, 5 (ii) You are here
Ex 3.3, 6 Important
Ex 3.3, 7
Ex 3.3, 8 Important
Ex 3.3, 9 Important
Ex 3.3, 10
Ex 3.3, 11 Important
Ex 3.3, 12
Ex 3.3, 13 Important
Ex 3.3, 14
Ex 3.3, 15
Ex 3.3, 16 Important
Ex 3.3, 17
Ex 3.3, 18 Important
Ex 3.3, 19
Ex 3.3, 20
Ex 3.3, 21 Important
Ex 3.3, 22 Important
Ex 3.3, 23 Important
Ex 3.3, 24
Ex 3.3, 25
Ex 3.3
Last updated at Aug. 27, 2021 by Teachoo
Maths Crash Course - Live lectures + all videos + Real time Doubt solving!
Ex 3.3, 5 Find the value of: (ii) tan 15° tan 15° = tan (45° – 30°) = (tan 45° − 〖 tan〗〖30°〗)/(1 + tan 45°tan〖30°〗 ) = (1 − 1/√3)/(1 + 1 × 1/√3) Using tan (x − y) = (𝑡𝑎𝑛𝑥 − 𝑡𝑎𝑛𝑦)/(1+𝑡𝑎𝑛 𝑥 𝑡𝑎𝑛𝑦 ) Putting x = 45° and y = 30° = ((√3 − 1" " )/√3)/((√3 + 1" " )/√3) = (√3 −1)/√3 × √3/(√3 + 1) = (√3 − 1)/(√3 + 1) Rationalizing = (√3 − 1)/(√3 + 1) × (√3 − 1)/(√3 − 1) = (√3 − 1)2/(√3 + 1)(√3 − 1) Using (a – b)2 = a2 + b2 – 2ab = ((√3)2 + 12 − 2" " × √3 × 1)/(√3 + 1)(√3 − 1) = (3 + 1 − 2√3)/(√(3 )+ 1)(√3 − 1) Using (a – b ) (a + b) = a2 – b2 = (4 − 2√3)/((√3)2 − (1)2) = (4 − 2√3)/(3 − 1) = (2 (2 − √(3 )))/2 = 2 – √3 Hence, tan 15° = 2 – √𝟑