

Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Ex 3.3
Ex 3.3, 2 Important
Ex 3.3, 3 Important
Ex 3.3, 4
Ex 3.3, 5 (i) Important
Ex 3.3, 5 (ii) You are here
Ex 3.3, 6 Important
Ex 3.3, 7
Ex 3.3, 8 Important
Ex 3.3, 9 Important
Ex 3.3, 10
Ex 3.3, 11 Important
Ex 3.3, 12
Ex 3.3, 13 Important
Ex 3.3, 14
Ex 3.3, 15
Ex 3.3, 16 Important
Ex 3.3, 17
Ex 3.3, 18 Important
Ex 3.3, 19
Ex 3.3, 20
Ex 3.3, 21 Important
Ex 3.3, 22 Important
Ex 3.3, 23 Important
Ex 3.3, 24
Ex 3.3, 25
Last updated at May 29, 2023 by Teachoo
Ex 3.3, 5 Find the value of: (ii) tan 15° tan 15° = tan (45° – 30°) = (tan 45° − 〖 tan〗〖30°〗)/(1 + tan 45°tan〖30°〗 ) = (1 − 1/√3)/(1 + 1 × 1/√3) Using tan (x − y) = (𝑡𝑎𝑛𝑥 − 𝑡𝑎𝑛𝑦)/(1+𝑡𝑎𝑛 𝑥 𝑡𝑎𝑛𝑦 ) Putting x = 45° and y = 30° = ((√3 − 1" " )/√3)/((√3 + 1" " )/√3) = (√3 −1)/√3 × √3/(√3 + 1) = (√3 − 1)/(√3 + 1) Rationalizing = (√3 − 1)/(√3 + 1) × (√3 − 1)/(√3 − 1) = (√3 − 1)2/(√3 + 1)(√3 − 1) Using (a – b)2 = a2 + b2 – 2ab = ((√3)2 + 12 − 2" " × √3 × 1)/(√3 + 1)(√3 − 1) = (3 + 1 − 2√3)/(√(3 )+ 1)(√3 − 1) Using (a – b ) (a + b) = a2 – b2 = (4 − 2√3)/((√3)2 − (1)2) = (4 − 2√3)/(3 − 1) = (2 (2 − √(3 )))/2 = 2 – √3 Hence, tan 15° = 2 – √𝟑