Get live Maths 1-on-1 Classs - Class 6 to 12
Ex 3.3
Ex 3.3, 2 Important
Ex 3.3, 3 Important You are here
Ex 3.3, 4
Ex 3.3, 5 (i) Important
Ex 3.3, 5 (ii)
Ex 3.3, 6 Important
Ex 3.3, 7
Ex 3.3, 8 Important
Ex 3.3, 9 Important
Ex 3.3, 10
Ex 3.3, 11 Important
Ex 3.3, 12
Ex 3.3, 13 Important
Ex 3.3, 14
Ex 3.3, 15
Ex 3.3, 16 Important
Ex 3.3, 17
Ex 3.3, 18 Important
Ex 3.3, 19
Ex 3.3, 20
Ex 3.3, 21 Important
Ex 3.3, 22 Important
Ex 3.3, 23 Important
Ex 3.3, 24
Ex 3.3, 25
Ex 3.3
Last updated at March 22, 2023 by Teachoo
Ex 3.3, 3 Prove that cot2 π/6 + cosec 5π/6 + 3 tan2 π/6 = 6 Taking L.H.S. cot2 π/6 + cosec 5π/6 + 3 tan2 π/6 Putting π = 180° = cot2(180/6) + cosec((5 ×180)/6) + 3 tan2(180/6) = cot2 30° + cosec (150°) + 3tan2 30° Here, tan 30° = 1/√3 cot 30° = 1/tan〖30°〗 = 1/(1/√3) = √3 For cosec 150° , First, Finding sin 150° sin 150° = sin (180 – 30° ) = sin 30° = 1/2 cosec 150° = 1/sin〖150°〗 = 1/(1/2) = 2 Putting values = cot2 30° + cosec (150°) + 3tan2 30° = (√3)2 + 2 + 3 × (1/√3)^2 = 3 + 2 + 3 × 1/3 = 3 + 2 + 1 = 6 = R.H.S Hence proved