Ex 3.3

Ex 3.3, 1
Important

Ex 3.3, 2 Important

Ex 3.3, 3 Important You are here

Ex 3.3, 4

Ex 3.3, 5 (i) Important

Ex 3.3, 5 (ii)

Ex 3.3, 6 Important

Ex 3.3, 7

Ex 3.3, 8 Important

Ex 3.3, 9 Important

Ex 3.3, 10

Ex 3.3, 11 Important

Ex 3.3, 12

Ex 3.3, 13 Important

Ex 3.3, 14

Ex 3.3, 15

Ex 3.3, 16 Important

Ex 3.3, 17

Ex 3.3, 18 Important

Ex 3.3, 19

Ex 3.3, 20

Ex 3.3, 21 Important

Ex 3.3, 22 Important

Ex 3.3, 23 Important

Ex 3.3, 24

Ex 3.3, 25

Chapter 3 Class 11 Trigonometric Functions

Serial order wise

Last updated at April 16, 2024 by Teachoo

Ex 3.3, 3 Prove that cot2 π/6 + cosec 5π/6 + 3 tan2 π/6 = 6 Solving L.H.S. cot2 π/6 + cosec 5π/6 + 3 tan2 π/6 Putting π = 180° = cot2(180/6) + cosec((5 ×180)/6) + 3 tan2(180/6) = cot2 30° + cosec (150°) + 3tan2 30° Here, tan 30° = 1/√3 cot 30° = 1/tan〖30°〗 = 1/(1/√3) = √𝟑 For cosec 150° First, Finding sin 150° sin 150° = sin (180 – 30°) = sin 30° = 𝟏/𝟐 cosec 150° = 1/sin〖150°〗 = 1/(1/2) = 2 Putting values cot2 30° + cosec (150°) + 3tan2 30° = (√𝟑)2 + 2 + 3 × (𝟏/√𝟑)^𝟐 = 3 + 2 + 3 × 1/3 = 3 + 2 + 1 = 6 = R.H.S Hence proved