Ex 3.3

Ex 3.3, 1
Important

Ex 3.3, 2 Important

Ex 3.3, 3 Important

Ex 3.3, 4 You are here

Ex 3.3, 5 (i) Important

Ex 3.3, 5 (ii)

Ex 3.3, 6 Important

Ex 3.3, 7

Ex 3.3, 8 Important

Ex 3.3, 9 Important

Ex 3.3, 10

Ex 3.3, 11 Important

Ex 3.3, 12

Ex 3.3, 13 Important

Ex 3.3, 14

Ex 3.3, 15

Ex 3.3, 16 Important

Ex 3.3, 17

Ex 3.3, 18 Important

Ex 3.3, 19

Ex 3.3, 20

Ex 3.3, 21 Important

Ex 3.3, 22 Important

Ex 3.3, 23 Important

Ex 3.3, 24

Ex 3.3, 25

Chapter 3 Class 11 Trigonometric Functions

Serial order wise

Last updated at April 16, 2024 by Teachoo

Ex 3.3, 4 Prove that 2sin2 3π/4 + 2cos2 π/4 + 2sec2 π/3 = 10 Solving L.H.S 2sin2 3π/4 + 2cos2 π/4 + 2sec2 π/3 Putting π = 180° 2 sin2 (3 × 180/4 ) + 2cos2 (180/4) + 2sec2 (180/3) = 2sin2 (135°) + 2 cos2 (45°) + 2sec2(60°) Here, cos 45° = 1/√2 sec 60° = 1/cos〖60°〗 = 1/(1/2) = 2 sin 135° = sin ( 180 – 45° ) = sin 45° = 1/√2 Putting values 2 sin2 (135°) +2 cos2 (45°) + 2sec2 (60°) = 2 × (𝟏/√𝟐)^𝟐 + 2 × (𝟏/√𝟐)^𝟐 + 2 × (2)2 = 2 [(1/√2)^2 " + " (1/√2)^2 " + 22" ] = 2 [ 1/2 + 1/2 + 4] = 2 [1 + 4] = 2 × 5 = 10 = R.H.S ∴ L.H.S. = R.H.S. Hence proved