Ex 3.3
Ex 3.3, 2 Important
Ex 3.3, 3 Important
Ex 3.3, 4
Ex 3.3, 5 (i) Important
Ex 3.3, 5 (ii)
Ex 3.3, 6 Important You are here
Ex 3.3, 7
Ex 3.3, 8 Important
Ex 3.3, 9 Important
Ex 3.3, 10
Ex 3.3, 11 Important
Ex 3.3, 12
Ex 3.3, 13 Important
Ex 3.3, 14
Ex 3.3, 15
Ex 3.3, 16 Important
Ex 3.3, 17
Ex 3.3, 18 Important
Ex 3.3, 19
Ex 3.3, 20
Ex 3.3, 21 Important
Ex 3.3, 22 Important
Ex 3.3, 23 Important
Ex 3.3, 24
Ex 3.3, 25
Last updated at April 16, 2024 by Teachoo
Ex 3.3, 6 Prove that: cos (Ο/4βπ₯) cos (Ο/4βπ¦) β sin (Ο/4βπ₯) sin (Ο/4βπ¦) = sinβ‘(π₯ + π¦) Solving L.H.S We know that cos (A + B) = cos A cos B β sin A sin B The equation given in Question is of this form Where A = (π/4 βπ₯) B = (π/4 βπ¦) Hence cos (Ο/4βπ₯) cos (Ο/4βπ¦) β sin (Ο/4βπ₯) sin (Ο/4βπ¦) = cos [(π /πβπ)" " +(π /π βπ)] = cos [Ο/4βπ₯+Ο/4 βπ¦] = cos [Ο/4+Ο/4βπ₯βπ¦] = cos [Ο/4+Ο/4βπ₯βπ¦] = cos [π /π " " β(π+π)] Putting Ο = 180Β° = cos [(180Β°)/2β(π₯+π¦)] = cos [90Β° β(π₯+π¦)] = sin (π+π) = R.H.S Hence proved = cos [(π /πβπ)" " +(π /π βπ)] = cos [Ο/4βπ₯+Ο/4 βπ¦] = cos [Ο/4+Ο/4βπ₯βπ¦] = cos [Ο/4+Ο/4βπ₯βπ¦] = cos [π /π " " β(π+π)] Putting Ο = 180Β° = cos [(180Β°)/2β(π₯+π¦)] = cos [90Β° β(π₯+π¦)] = sin (π+π) = R.H.S Hence proved