

Introducing your new favourite teacher - Teachoo Black, at only βΉ83 per month
Ex 3.3
Ex 3.3, 2 Important
Ex 3.3, 3 Important
Ex 3.3, 4
Ex 3.3, 5 (i) Important
Ex 3.3, 5 (ii)
Ex 3.3, 6 Important You are here
Ex 3.3, 7
Ex 3.3, 8 Important
Ex 3.3, 9 Important
Ex 3.3, 10
Ex 3.3, 11 Important
Ex 3.3, 12
Ex 3.3, 13 Important
Ex 3.3, 14
Ex 3.3, 15
Ex 3.3, 16 Important
Ex 3.3, 17
Ex 3.3, 18 Important
Ex 3.3, 19
Ex 3.3, 20
Ex 3.3, 21 Important
Ex 3.3, 22 Important
Ex 3.3, 23 Important
Ex 3.3, 24
Ex 3.3, 25
Ex 3.3
Last updated at Feb. 13, 2020 by Teachoo
Ex 3.3, 6 Prove that: cos (Ο/4βπ₯) cos (Ο/4βπ¦) β sin (Ο/4βπ₯) sin (Ο/4βπ¦) = sinβ‘(π₯ + π¦) Taking L.H.S We know that cos (A + B) = cos A cos B β sin A sin B The equation given in Question is of this form Where A = (π/4 βπ₯) B = (π/4 βπ¦) Hence cos (Ο/4βπ₯) cos (Ο/4βπ¦) β sin (Ο/4βπ₯) sin (Ο/4βπ¦) = cos [(Ο/4βπ₯)" " +(Ο/4 βπ¦)] = cos [Ο/4βπ₯+Ο/4 βπ¦] = cos [Ο/4+Ο/4βπ₯βπ¦] = cos [Ο/4+Ο/4βπ₯βπ¦] = cos [Ο/2 " " β(π₯+π¦)] Putting Ο = 180Β° = cos [(180Β°)/2β(π₯+π¦)] = cos [90Β° β(π₯+π¦)] = sin (π₯+π¦) = R.H.S Hence proved