

Maths Crash Course - Live lectures + all videos + Real time Doubt solving!
Ex 3.3
Ex 3.3, 2 Important
Ex 3.3, 3 Important
Ex 3.3, 4
Ex 3.3, 5 (i) Important
Ex 3.3, 5 (ii)
Ex 3.3, 6 Important You are here
Ex 3.3, 7
Ex 3.3, 8 Important
Ex 3.3, 9 Important
Ex 3.3, 10
Ex 3.3, 11 Important
Ex 3.3, 12
Ex 3.3, 13 Important
Ex 3.3, 14
Ex 3.3, 15
Ex 3.3, 16 Important
Ex 3.3, 17
Ex 3.3, 18 Important
Ex 3.3, 19
Ex 3.3, 20
Ex 3.3, 21 Important
Ex 3.3, 22 Important
Ex 3.3, 23 Important
Ex 3.3, 24
Ex 3.3, 25
Ex 3.3
Last updated at Feb. 13, 2020 by Teachoo
Maths Crash Course - Live lectures + all videos + Real time Doubt solving!
Ex 3.3, 6 Prove that: cos (Ο/4βπ₯) cos (Ο/4βπ¦) β sin (Ο/4βπ₯) sin (Ο/4βπ¦) = sinβ‘(π₯ + π¦) Taking L.H.S We know that cos (A + B) = cos A cos B β sin A sin B The equation given in Question is of this form Where A = (π/4 βπ₯) B = (π/4 βπ¦) Hence cos (Ο/4βπ₯) cos (Ο/4βπ¦) β sin (Ο/4βπ₯) sin (Ο/4βπ¦) = cos [(Ο/4βπ₯)" " +(Ο/4 βπ¦)] = cos [Ο/4βπ₯+Ο/4 βπ¦] = cos [Ο/4+Ο/4βπ₯βπ¦] = cos [Ο/4+Ο/4βπ₯βπ¦] = cos [Ο/2 " " β(π₯+π¦)] Putting Ο = 180Β° = cos [(180Β°)/2β(π₯+π¦)] = cos [90Β° β(π₯+π¦)] = sin (π₯+π¦) = R.H.S Hence proved