


Get live Maths 1-on-1 Classs - Class 6 to 12
Ex 3.3
Ex 3.3, 2 Important
Ex 3.3, 3 Important
Ex 3.3, 4
Ex 3.3, 5 (i) Important
Ex 3.3, 5 (ii)
Ex 3.3, 6 Important
Ex 3.3, 7
Ex 3.3, 8 Important
Ex 3.3, 9 Important You are here
Ex 3.3, 10
Ex 3.3, 11 Important
Ex 3.3, 12
Ex 3.3, 13 Important
Ex 3.3, 14
Ex 3.3, 15
Ex 3.3, 16 Important
Ex 3.3, 17
Ex 3.3, 18 Important
Ex 3.3, 19
Ex 3.3, 20
Ex 3.3, 21 Important
Ex 3.3, 22 Important
Ex 3.3, 23 Important
Ex 3.3, 24
Ex 3.3, 25
Ex 3.3
Last updated at March 22, 2023 by Teachoo
Ex 3.3, 9 Prove cos (3π/2+𝑥) cos (2π + 𝑥)[cot (3π/2−𝑥) + cot (2π + 𝑥)] =1 Taking L.H.S. First we solve cos (𝟑𝝅/𝟐 "+ " 𝒙) Putting π = 180° = cos ((3 × 180°)/2 " + x" ) = cos ( 270° + x) = cos ( 360° – 90° + x) = cos (2π – 90° + x) = cos (2π + (x – 90°)) = cos (x – 90°) = cos (– (90°– x)) = cos (90°– x) = sin x Now cos (2π + x) = cos x & cot (2π + x) = cot x Now we solve cot (𝟑𝝅/𝟐 "− " 𝒙) Putting π = 180° = cot ((3 × 180°)/2 " − x" ) = cot (270° "−" x) = cot (360° – 90° "−" x) = cot (2π "−" 90° "−" x) = cot (2π "−" (x + 90°)) = "−"cot (x + 90°) = –(–tan x) = tan x Now putting values in equation cos (3π/2+𝑥) cos (2π + 𝑥)[cot (3π/2−𝑥) + cot (2π + 𝑥)] = (sin x) × (cos x) × [tan x + cot x] = (sin x cos x) × [cot x + tan x] = (sin x cos x) × [cos𝑥/sin𝑥 + sin𝑥/cos𝑥 ] = (sin x cos x) × [(〖(cos〗𝑥) × 〖(cos〗𝑥)+〖 (sin〗𝑥) × 〖(sin〗𝑥))/(sin𝑥 × 〖(cos〗𝑥))] = (sin x cos x) × [(cos2𝑥 +〖 sin2〗𝑥)/(sin𝑥 × 〖(cos〗𝑥))] = cos2𝑥 +〖 sin2〗𝑥 = 1 = R.H.S Hence proved