Ex 3.3
Ex 3.3, 2 Important
Ex 3.3, 3 Important
Ex 3.3, 4
Ex 3.3, 5 (i) Important
Ex 3.3, 5 (ii)
Ex 3.3, 6 Important
Ex 3.3, 7
Ex 3.3, 8 Important
Ex 3.3, 9 Important
Ex 3.3, 10
Ex 3.3, 11 Important
Ex 3.3, 12
Ex 3.3, 13 Important
Ex 3.3, 14
Ex 3.3, 15 You are here
Ex 3.3, 16 Important
Ex 3.3, 17
Ex 3.3, 18 Important
Ex 3.3, 19
Ex 3.3, 20
Ex 3.3, 21 Important
Ex 3.3, 22 Important
Ex 3.3, 23 Important
Ex 3.3, 24
Ex 3.3, 25
Ex 3.3
Last updated at Dec. 8, 2016 by Teachoo
Ex 3.3, 15 Prove that cot 4x (sin 5x + sin 3x) = cot x (sin 5x – sin 3x) Solving L.H.S. cot 4x ( sin 5x + sin 3x ) Using sin x + sin y = 2 sin (𝑥 + 𝑦)/2 cos (𝑥 − 𝑦)/2 Putting x = 5x & y = 3x = cot 4x × [ 2 sin ((5𝑥 + 3𝑥)/2) cos ((5𝑥 − 3𝑥)/2) ] = cot 4x × [ 2sin (8𝑥/2) cos (2𝑥/2)] = 2 cot 4x sin 4x cos x = 2 𝑐𝑜𝑠4𝑥/𝑠𝑖𝑛4𝑥 × sin 4x × cos x = 2 cos 4x cos x Solving R.H.S. cot x ( sin 5x – sin 3x ) Using sin x – sin y = 2 cos (𝑥 + 𝑦)/2 sin (𝑥 − 𝑦)/2 Putting x = 5x & y = 3x = cot x ( 2 cos (5𝑥 + 3𝑥)/2 sin (5𝑥 − 3𝑥)/2 ) = cot x ( 2 cos (8𝑥/2) sin (2𝑥/2)] = cot x ( 2 cos 4x sin x) = 2 cos 4x sin x cot x = 2 cos 4x sin x × 𝑐𝑜𝑠𝑥/sin𝑥 = 2 cos 4x cos x = L.H.S Hence L.H.S. = R.H.S. Hence Proved