Learn All Concepts of Chapter 2 Class 11 Relations and Function - FREE. Check - Trigonometry Class 11 - All Concepts

Last updated at Dec. 8, 2016 by Teachoo
Learn All Concepts of Chapter 2 Class 11 Relations and Function - FREE. Check - Trigonometry Class 11 - All Concepts
Transcript
Ex 3.3, 15 Prove that cot 4x (sin 5x + sin 3x) = cot x (sin 5x β sin 3x) Solving L.H.S. cot 4x ( sin 5x + sin 3x ) Using sin x + sin y = 2 sin (π₯ + π¦)/2 cos (π₯ β π¦)/2 Putting x = 5x & y = 3x = cot 4x Γ [ 2 sin ((5π₯ + 3π₯)/2) cos ((5π₯ β 3π₯)/2) ] = cot 4x Γ [ 2sin (8π₯/2) cos (2π₯/2)] = 2 cot 4x sin 4x cos x = 2 πππ β‘4π₯/π ππβ‘4π₯ Γ sin 4x Γ cos x = 2 cos 4x cos x Solving R.H.S. cot x ( sin 5x β sin 3x ) Using sin x β sin y = 2 cos (π₯ + π¦)/2 sin (π₯ β π¦)/2 Putting x = 5x & y = 3x = cot x ( 2 cos (5π₯ + 3π₯)/2 sin (5π₯ β 3π₯)/2 ) = cot x ( 2 cos (8π₯/2) sin (2π₯/2)] = cot x ( 2 cos 4x sin x) = 2 cos 4x sin x cot x = 2 cos 4x sin x Γ πππ β‘π₯/sinβ‘π₯ = 2 cos 4x cos x = L.H.S Hence L.H.S. = R.H.S. Hence Proved
Ex 3.3
Ex 3.3, 2 Important
Ex 3.3, 3 Important
Ex 3.3, 4
Ex 3.3, 5 Important
Ex 3.3, 6 Important
Ex 3.3, 7
Ex 3.3, 8 Important
Ex 3.3, 9 Important
Ex 3.3, 10
Ex 3.3, 11 Important
Ex 3.3, 12
Ex 3.3, 13
Ex 3.3, 14
Ex 3.3, 15 You are here
Ex 3.3, 16
Ex 3.3, 17
Ex 3.3, 18 Important
Ex 3.3, 19
Ex 3.3, 20
Ex 3.3, 21 Important
Ex 3.3, 22 Important
Ex 3.3, 23 Important
Ex 3.3, 24
Ex 3.3, 25
About the Author