

Ex 3.3
Ex 3.3, 2 Important
Ex 3.3, 3 Important
Ex 3.3, 4
Ex 3.3, 5 (i) Important
Ex 3.3, 5 (ii)
Ex 3.3, 6 Important
Ex 3.3, 7
Ex 3.3, 8 Important
Ex 3.3, 9 Important
Ex 3.3, 10
Ex 3.3, 11 Important
Ex 3.3, 12
Ex 3.3, 13 Important
Ex 3.3, 14
Ex 3.3, 15
Ex 3.3, 16 Important
Ex 3.3, 17
Ex 3.3, 18 Important
Ex 3.3, 19
Ex 3.3, 20
Ex 3.3, 21 Important
Ex 3.3, 22 Important
Ex 3.3, 23 Important
Ex 3.3, 24 You are here
Ex 3.3, 25
Ex 3.3
Last updated at Jan. 7, 2020 by Teachoo
Ex 3.3, 24 Prove that cos 4𝑥 = 1 – 8sin2 𝑥 cos2 𝑥 Taking L.H.S. cos 4x = 2(cos 2x)2 – 1 = 2 ( 2 cos2 x – 1)2 -1 Using (a – b)2 = a2 + b2 – 2ab = 2 [(2cos x)2 + (1)2 – 2 ( 2cos2x ) × 1] – 1 = 2 (4cos4x + 1 – 4 cos2x ) – 1 = 2 × 4cos4x + 2 × 1– 2 × 4 cos2x – 1 = 8cos4x + 2 – 8 cos2x -1 = 8cos4x – 8 cos2x + 2 – 1 = 8cos4x – 8 cos2x + 1 = 8cos2x (cos2x – 1) + 1 = 8cos2x [– (1 – cos2x)] + 1 = –8cos2x [(1 – cos2x )] + 1 = – 8cos2x sin2x + 1 = 1 – 8 cos2x sin2x = R.H.S. Hence R.H.S. = L.H.S. Hence proved