
Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Ex 3.3
Ex 3.3, 2 Important
Ex 3.3, 3 Important
Ex 3.3, 4
Ex 3.3, 5 (i) Important
Ex 3.3, 5 (ii)
Ex 3.3, 6 Important
Ex 3.3, 7
Ex 3.3, 8 Important
Ex 3.3, 9 Important
Ex 3.3, 10
Ex 3.3, 11 Important
Ex 3.3, 12
Ex 3.3, 13 Important
Ex 3.3, 14
Ex 3.3, 15
Ex 3.3, 16 Important
Ex 3.3, 17
Ex 3.3, 18 Important
Ex 3.3, 19
Ex 3.3, 20
Ex 3.3, 21 Important
Ex 3.3, 22 Important
Ex 3.3, 23 Important
Ex 3.3, 24 You are here
Ex 3.3, 25
Last updated at May 29, 2023 by Teachoo
Ex 3.3, 24 Prove that cos 4π₯ = 1 β 8sin2 π₯ cos2 π₯ Taking L.H.S. cos 4x = 2(cos 2x)2 β 1 = 2 ( 2 cos2 x β 1)2 -1 Using (a β b)2 = a2 + b2 β 2ab = 2 [(2cos x)2 + (1)2 β 2 ( 2cos2x ) Γ 1] β 1 = 2 (4cos4x + 1 β 4 cos2x ) β 1 = 2 Γ 4cos4x + 2 Γ 1β 2 Γ 4 cos2x β 1 = 8cos4x + 2 β 8 cos2x -1 = 8cos4x β 8 cos2x + 2 β 1 = 8cos4x β 8 cos2x + 1 = 8cos2x (cos2x β 1) + 1 = 8cos2x [β (1 β cos2x)] + 1 = β8cos2x [(1 β cos2x )] + 1 = β 8cos2x sin2x + 1 = 1 β 8 cos2x sin2x = R.H.S. Hence R.H.S. = L.H.S. Hence proved