Last updated at May 29, 2018 by Teachoo
Transcript
Ex 3.3, 22 Prove that cot ๐ฅ cot 2๐ฅ โ cot 2๐ฅ cot 3๐ฅ โ cot 3๐ฅ cot ๐ฅ = 1 Taking L.H.S. cot x cot 2x โ cot 2x cot 3x โ cot 3x cot x = cot x cot 2x โ cot 3x (cot 2x + cot x) = cot x cot 2x โ cot (2x + x) (cot 2x + cot x) = cot x cot 2x โ ((cot 2x cot x โ 1)/(cot x + cot 2x)) (cot 2x + cot x) = cot x cot 2x โ (cot 2x cot x โ 1) = cot x cot 2x โ cot 2x cot x + 1 = 1 = R.H.S. Hence L.H.S = R.H.S Hence proved
Ex 3.3
Ex 3.3, 2
Ex 3.3, 3
Ex 3.3, 4 Important
Ex 3.3, 5 Important
Ex 3.3, 6
Ex 3.3, 7
Ex 3.3, 8 Important
Ex 3.3, 9
Ex 3.3, 10
Ex 3.3, 11 Important
Ex 3.3, 12
Ex 3.3, 13
Ex 3.3, 14
Ex 3.3, 15
Ex 3.3, 16
Ex 3.3, 17
Ex 3.3, 18 Important
Ex 3.3, 19
Ex 3.3, 20
Ex 3.3, 21 Important
Ex 3.3, 22 You are here
Ex 3.3, 23 Important
Ex 3.3, 24
Ex 3.3, 25
About the Author