

Ex 3.3
Ex 3.3, 2 Important
Ex 3.3, 3 Important
Ex 3.3, 4
Ex 3.3, 5 (i) Important
Ex 3.3, 5 (ii)
Ex 3.3, 6 Important
Ex 3.3, 7
Ex 3.3, 8 Important You are here
Ex 3.3, 9 Important
Ex 3.3, 10
Ex 3.3, 11 Important
Ex 3.3, 12
Ex 3.3, 13 Important
Ex 3.3, 14
Ex 3.3, 15
Ex 3.3, 16 Important
Ex 3.3, 17
Ex 3.3, 18 Important
Ex 3.3, 19
Ex 3.3, 20
Ex 3.3, 21 Important
Ex 3.3, 22 Important
Ex 3.3, 23 Important
Ex 3.3, 24
Ex 3.3, 25
Ex 3.3
Last updated at Feb. 12, 2020 by Teachoo
Ex 3.3, 8 Prove that cosβ‘γ (Ο + π₯) cosβ‘γ(β π₯)γ γ/(sinβ‘γ (Ο β π₯)γ cosβ‘γ"(" Ο/2 " + " π₯")" γ ) = cot2 π₯ Taking L.H.S. πππ β‘γ(π + π₯) γπππ γβ‘γ(βπ₯)γ γ/(π ππβ‘(π β π₯) πππ β‘γ"(" π/2 " + " π₯")" γ ) Putting Ο = 180Β° = πππ β‘γ(180Β° + π₯) γπππ γβ‘γ(βπ₯)γ γ/(π ππβ‘(180Β° β π₯) πππ β‘γ"(" 90Β° "+ " π₯")" γ ) Using cos (180Β° + x) = βcos x cos (βx) = cos x sin (180Β° β x) = sin x & cos(90Β° + x) = βsin x = (βπππ β‘γπ₯ Γ πππ β‘π₯ γ)/((sinβ‘γπ₯) Γγ(βsinγβ‘π₯) γ ) = (βπππ 2π₯)/(βπ ππ2π₯) = cot2x = R.H.S. Hence proved