Ex 3.3

Chapter 3 Class 11 Trigonometric Functions
Serial order wise

Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class

### Transcript

Ex 3.3, 8 Prove that cosβ‘γ (Ο + π₯) cosβ‘γ(β π₯)γ γ/(sinβ‘γ (Ο β π₯)γ cosβ‘γ"(" Ο/2 " + " π₯")" γ ) = cot2 π₯ Taking L.H.S. πππ β‘γ(π + π₯) γπππ  γβ‘γ(βπ₯)γ γ/(π ππβ‘(π β π₯) πππ β‘γ"(" π/2 " + " π₯")" γ ) Putting Ο = 180Β° = πππ β‘γ(180Β° + π₯) γπππ  γβ‘γ(βπ₯)γ γ/(π ππβ‘(180Β° β π₯) πππ β‘γ"(" 90Β° "+ " π₯")" γ ) Using cos (180Β° + x) = βcos x cos (βx) = cos x sin (180Β° β x) = sin x & cos(90Β° + x) = βsin x = (βπππ β‘γπ₯ Γ πππ β‘π₯ γ)/((sinβ‘γπ₯) Γγ(βsinγβ‘π₯) γ ) = (βπππ 2π₯)/(βπ ππ2π₯) = cot2x = R.H.S. Hence proved

Made by

#### Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 13 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.