Learn All Concepts of Chapter 2 Class 11 Relations and Function - FREE. Check - Trigonometry Class 11 - All Concepts



Last updated at Feb. 12, 2020 by Teachoo
Learn All Concepts of Chapter 2 Class 11 Relations and Function - FREE. Check - Trigonometry Class 11 - All Concepts
Transcript
Ex 3.3, 23 Prove that tanβ‘4π₯ = (4 tanβ‘γπ₯ (1βtan2π₯)γ)/(1 β 6 tan2 π₯+tan4 π₯) Taking L.H.S. tan 4x We know that tan 2x = (2 π‘ππβ‘π₯)/(1 β π‘ππ2 π₯) Replacing x with 2x tan (2 Γ 2x) = (2 π‘ππβ‘2π₯)/(1 β π‘ππ2 2π₯) tan 4x = (2 π‘ππβ‘2π₯)/(1 β π‘ππ2 2π₯) = (2 tanβ‘2x)/(1 β tan2 2x) = 2((2 tanβ‘π₯)/(1 β π‘ππ2 π₯))/(1 β ((2 tanβ‘π₯)/(1 β π‘ππ2 π₯))^2 ) = (((4 tanβ‘π₯)/(1 β π‘ππ2 π₯)))/(1 β((2 tanβ‘π₯ )^2/(1 β π‘ππ2 π₯)^2 ) ) = (((4 tanβ‘π₯)/(1 β π‘ππ2 π₯)))/(1 β((4 γπ‘ππγ^2 π₯)/(1 β π‘ππ2 π₯)^2 ) ) Using tan 2x = (2 tanβ‘x)/(1 β tan2 x) = (((4 tanβ‘π₯)/(1 β π‘ππ2 π₯)))/((((1 β π‘ππ2 π₯)^2 β4 γπ‘ππγ^2 π₯)/(1 β π‘ππ2 π₯)^2 ) ) = (4 tanβ‘π₯)/(1 β tan2β‘π₯ ) Γ (1 β tan2β‘π₯ )^2/((1 β π‘ππ2 π₯)2 β4 tan2β‘π₯ ) = (4 tanβ‘π₯)/1 Γ ((1 β tan2β‘γπ₯)γ)/((1 β π‘ππ2 π₯)2 β 4 tan2β‘π₯ ) = (4 tanβ‘γπ₯ (1 β π‘ππ2 π₯γ))/((1 βtan2β‘π₯ )2 β 4 tanβ‘2π₯ ) Using (a β b)2 = a2 + b2 β 2ab = (4 tanβ‘γπ₯ (1 β tan2β‘π₯)γ)/(( 12+(π‘ππ2 π₯)2 β 2 Γ 1 Γ π‘ππ2 π₯) β4 π‘ππ2 π₯) = (4 tanβ‘γπ₯ (1 β tan2β‘π₯)γ)/(1 + tanβ‘γ4 π₯ β 2 tan2β‘γπ₯ β4 tan2β‘π₯ γ γ ) = (4 tanβ‘γπ₯ (1 β tan2β‘γπ₯)γ γ)/(1 + tan4β‘γπ₯ β 6 π‘ππ4 π₯γ ) = R.H.S. Hence L.H.S. = R.H.S. Hence proved
Ex 3.3
Ex 3.3, 2 Important
Ex 3.3, 3 Important
Ex 3.3, 4
Ex 3.3, 5 Important
Ex 3.3, 6 Important
Ex 3.3, 7
Ex 3.3, 8 Important
Ex 3.3, 9 Important
Ex 3.3, 10
Ex 3.3, 11 Important
Ex 3.3, 12
Ex 3.3, 13
Ex 3.3, 14
Ex 3.3, 15
Ex 3.3, 16
Ex 3.3, 17
Ex 3.3, 18 Important
Ex 3.3, 19
Ex 3.3, 20
Ex 3.3, 21 Important
Ex 3.3, 22 Important
Ex 3.3, 23 Important You are here
Ex 3.3, 24
Ex 3.3, 25
About the Author