



Get live Maths 1-on-1 Classs - Class 6 to 12
Ex 3.3
Ex 3.3, 2 Important
Ex 3.3, 3 Important
Ex 3.3, 4
Ex 3.3, 5 (i) Important
Ex 3.3, 5 (ii)
Ex 3.3, 6 Important
Ex 3.3, 7
Ex 3.3, 8 Important
Ex 3.3, 9 Important
Ex 3.3, 10
Ex 3.3, 11 Important
Ex 3.3, 12
Ex 3.3, 13 Important
Ex 3.3, 14
Ex 3.3, 15
Ex 3.3, 16 Important
Ex 3.3, 17
Ex 3.3, 18 Important
Ex 3.3, 19
Ex 3.3, 20
Ex 3.3, 21 Important
Ex 3.3, 22 Important
Ex 3.3, 23 Important You are here
Ex 3.3, 24
Ex 3.3, 25
Ex 3.3
Last updated at March 22, 2023 by Teachoo
Ex 3.3, 23 Prove that tanβ‘4π₯ = (4 tanβ‘γπ₯ (1βtan2π₯)γ)/(1 β 6 tan2 π₯+tan4 π₯) Taking L.H.S. tan 4x We know that tan 2x = (2 π‘ππβ‘π₯)/(1 β π‘ππ2 π₯) Replacing x with 2x tan (2 Γ 2x) = (2 π‘ππβ‘2π₯)/(1 β π‘ππ2 2π₯) tan 4x = (2 π‘ππβ‘2π₯)/(1 β π‘ππ2 2π₯) = (2 tanβ‘2x)/(1 β tan2 2x) = 2((2 tanβ‘π₯)/(1 β π‘ππ2 π₯))/(1 β ((2 tanβ‘π₯)/(1 β π‘ππ2 π₯))^2 ) = (((4 tanβ‘π₯)/(1 β π‘ππ2 π₯)))/(1 β((2 tanβ‘π₯ )^2/(1 β π‘ππ2 π₯)^2 ) ) = (((4 tanβ‘π₯)/(1 β π‘ππ2 π₯)))/(1 β((4 γπ‘ππγ^2 π₯)/(1 β π‘ππ2 π₯)^2 ) ) Using tan 2x = (2 tanβ‘x)/(1 β tan2 x) = (((4 tanβ‘π₯)/(1 β π‘ππ2 π₯)))/((((1 β π‘ππ2 π₯)^2 β4 γπ‘ππγ^2 π₯)/(1 β π‘ππ2 π₯)^2 ) ) = (4 tanβ‘π₯)/(1 β tan2β‘π₯ ) Γ (1 β tan2β‘π₯ )^2/((1 β π‘ππ2 π₯)2 β4 tan2β‘π₯ ) = (4 tanβ‘π₯)/1 Γ ((1 β tan2β‘γπ₯)γ)/((1 β π‘ππ2 π₯)2 β 4 tan2β‘π₯ ) = (4 tanβ‘γπ₯ (1 β π‘ππ2 π₯γ))/((1 βtan2β‘π₯ )2 β 4 tanβ‘2π₯ ) Using (a β b)2 = a2 + b2 β 2ab = (4 tanβ‘γπ₯ (1 β tan2β‘π₯)γ)/(( 12+(π‘ππ2 π₯)2 β 2 Γ 1 Γ π‘ππ2 π₯) β4 π‘ππ2 π₯) = (4 tanβ‘γπ₯ (1 β tan2β‘π₯)γ)/(1 + tanβ‘γ4 π₯ β 2 tan2β‘γπ₯ β4 tan2β‘π₯ γ γ ) = (4 tanβ‘γπ₯ (1 β tan2β‘γπ₯)γ γ)/(1 + tan4β‘γπ₯ β 6 π‘ππ4 π₯γ ) = R.H.S. Hence L.H.S. = R.H.S. Hence proved