Ex 3.3
Ex 3.3, 2 Important
Ex 3.3, 3 Important
Ex 3.3, 4
Ex 3.3, 5 (i) Important
Ex 3.3, 5 (ii)
Ex 3.3, 6 Important
Ex 3.3, 7
Ex 3.3, 8 Important
Ex 3.3, 9 Important
Ex 3.3, 10
Ex 3.3, 11 Important
Ex 3.3, 12 You are here
Ex 3.3, 13 Important
Ex 3.3, 14
Ex 3.3, 15
Ex 3.3, 16 Important
Ex 3.3, 17
Ex 3.3, 18 Important
Ex 3.3, 19
Ex 3.3, 20
Ex 3.3, 21 Important
Ex 3.3, 22 Important
Ex 3.3, 23 Important
Ex 3.3, 24
Ex 3.3, 25
Last updated at Dec. 13, 2024 by Teachoo
Ex 3.3, 12 Prove that sin2 6π₯ β sin2 4π₯ = sinβ‘2π₯ sinβ‘10π₯ Solving L.H.S. sin2 6x β sin2 4x = (sin 6x + sin 4x) (sin 6x β sin 4x) Lets calculate (sin 6x + sin 4x) and (sin 6x β sin 4x) separately sin 6x + sin 4x = 2 sin ((6x+4x)/2) cos ((6xβ4x)/2) = 2sin (10π₯/2) cos (2π₯/2) = 2sin 5x cos x sin 6x β sin 4x = 2 cos ((6x+4x)/2) sin((6xβ4x)/2) = 2 cos (10π₯/2) sin (2π₯/2) = 2 cos 5x sin x Hence sin2 6x β sin2 4x = (sin 6x + sin 4x) (sin 6x β sin 4x) = (2 sin 5x cos x) (2 cos 5x sin x) = (2 sin 5x cos 5x) . (2 sin x cos x) = (sin 10x) Γ (sin 2x) = R.H.S. Hence, L.H.S. = R.H.S. Hence proved