There is some mistake in this Video. Please check images above.
Ex 3.3
Ex 3.3, 2 Important You are here
Ex 3.3, 3 Important
Ex 3.3, 4
Ex 3.3, 5 (i) Important
Ex 3.3, 5 (ii)
Ex 3.3, 6 Important
Ex 3.3, 7
Ex 3.3, 8 Important
Ex 3.3, 9 Important
Ex 3.3, 10
Ex 3.3, 11 Important
Ex 3.3, 12
Ex 3.3, 13 Important
Ex 3.3, 14
Ex 3.3, 15
Ex 3.3, 16 Important
Ex 3.3, 17
Ex 3.3, 18 Important
Ex 3.3, 19
Ex 3.3, 20
Ex 3.3, 21 Important
Ex 3.3, 22 Important
Ex 3.3, 23 Important
Ex 3.3, 24
Ex 3.3, 25
Last updated at April 16, 2024 by Teachoo
There is some mistake in this Video. Please check images above.
Ex 3.3, 2 Prove that 2sin2 π/6 + cosec2 7π/6 cos2 π/3 = 3/2 Solving L.H.S 2sin2 π/6 + cosec2 7π/6 cos2 π/3 Putting π = 180° = 2 sin2 180/6 + cosec2 (7 ×180)/6 cos2 180/3 = 2sin2 30° + cosec2 210° cos2 60° = 2(sin 30°)2 + (cosec 210°)2 (cos 60°)2 For cosec 210° , Lets first calculate sin 210° sin 210° = sin (180° + 30°) = −sin 30° = (−1)/2 So, cosec 210° = 1/sin〖210°〗 = 1/((−1)/2) = 2/(−1 ) = –2 Putting values in equation 2(sin 30°)2 + (cosec 210°)2 (cos 60°)2 = 2 (1/2)^2 + (–2)2 × (1/2)^2 = 2 × 1/4 + 4 × 1/4 = 𝟏/𝟐 + 1 = 1/2 + 1 = 3/2 = R.H.S Hence proved