Check sibling questions


Transcript

Ex 7.8, 14 โˆซ_0^1โ–’(2๐‘ฅ + 3)/(5๐‘ฅ2 + 1) dx Let F(๐’™)=โˆซ1โ–’(2๐‘ฅ + 3)/(5๐‘ฅ^2 + 1) ๐‘‘๐‘ฅ =โˆซ1โ–’2๐‘ฅ/(5๐‘ฅ^2 + 1) ๐‘‘๐‘ฅ+โˆซ1โ–’3/(5๐‘ฅ^2 + 1) ๐‘‘๐‘ฅ Solving โˆซ1โ–’๐Ÿ๐’™/(๐Ÿ“๐’™^๐Ÿ + ๐Ÿ) ๐’…๐’™ Put ๐‘ฅ^2=๐‘ก Differentiating w.r.t.๐‘ฅ 2๐‘ฅ=๐‘‘๐‘ก/๐‘‘๐‘ฅ ๐‘‘๐‘ฅ=๐‘‘๐‘ก/2๐‘ฅ Hence โˆซ1โ–’ใ€–(2๐‘ฅ )/(5๐‘ฅ^2 + 1) ๐‘‘๐‘ฅ=โˆซ1โ–’ใ€–2๐‘ฅ/(5๐‘ก+1) ๐‘‘๐‘ก/2๐‘ฅใ€—ใ€— =โˆซ1โ–’๐‘‘๐‘ก/(5๐‘ก+1) =1/5 ๐‘™๐‘œ๐‘”|5๐‘ก+1| =๐Ÿ/๐Ÿ“ ๐’๐’๐’ˆ|๐Ÿ“๐’™^๐Ÿ+๐Ÿ| Integrating โˆซ1โ–’ใ€–๐Ÿ‘/(๐Ÿ“๐’™^๐Ÿ+๐Ÿ) ๐’…๐’™ใ€— โˆซ1โ–’ใ€–3/(5๐‘ฅ^2+1) ๐‘‘๐‘ฅใ€— =3โˆซ1โ–’๐‘‘๐‘ฅ/(5๐‘ฅ^2+1) =3/5 โˆซ1โ–’๐‘‘๐‘ฅ/(๐‘ฅ^2 + 1/5) =3/5 โˆซ1โ–’๐‘‘๐‘ฅ/(๐‘ฅ^2 +(1/โˆš5)^2 ) =3/5ร—(1/1)/โˆš5 tan^(โˆ’1) ((๐‘ฅ/1)/โˆš5) =3/5ร—โˆš5 ใ€–๐‘ก๐‘Ž๐‘›ใ€—^(โˆ’1) (โˆš5 ๐‘ฅ) =๐Ÿ‘/๐Ÿ“ ใ€–๐’•๐’‚๐’ใ€—^(โˆ’๐Ÿ) (โˆš๐Ÿ“ ๐’™) Hence, F(๐’™)=โˆซ1โ–’2๐‘ฅ/(5๐‘ฅ^2 + 1) ๐‘‘๐‘ฅ+โˆซ1โ–’3/(5๐‘ฅ^2 + 1) ๐‘‘๐‘ฅ =๐Ÿ/๐Ÿ“ ๐’๐’๐’ˆ|๐Ÿ“๐’™^๐Ÿ+๐Ÿ|+๐Ÿ‘/โˆš๐Ÿ“ ใ€–๐’•๐’‚๐’ใ€—^(โˆ’๐Ÿ) (โˆš๐Ÿ“ ๐’™) Now, โˆซ_0^1โ–’ใ€–(2๐‘ฅ + 3)/(ใ€–5๐‘ฅใ€—^2+ 1) ๐‘‘x=๐…(๐Ÿ)โˆ’๐…(๐ŸŽ)ใ€— =1/5 ๐‘™๐‘œ๐‘”|5ใ€–ร—1ใ€—^2+1|+3/โˆš5 ใ€–๐‘ก๐‘Ž๐‘›ใ€—^(โˆ’1) (โˆš5 ๐‘ฅ) โˆ’[1/5 ๐‘™๐‘œ๐‘”|5ร—0+1|+3/โˆš5 ใ€–๐‘ก๐‘Ž๐‘›ใ€—^(โˆ’1) (โˆš5ร—0)] =1/5 |6|+3/โˆš5 ใ€–๐‘ก๐‘Ž๐‘›ใ€—^(โˆ’1) โˆš5โˆ’1/5 ๐‘™๐‘œ๐‘”1+3/5 ใ€–๐‘ก๐‘Ž๐‘›ใ€—^(โˆ’1) 0 =1/5 ๐‘™๐‘œ๐‘” 6+3/โˆš5 ใ€–๐‘ก๐‘Ž๐‘›ใ€—^(โˆ’1) โˆš5โˆ’1/5ร—0+3/5ร—0 =๐Ÿ/๐Ÿ“ ๐’๐’๐’ˆ ๐Ÿ”+๐Ÿ‘/โˆš๐Ÿ“ ใ€–๐’•๐’‚๐’ใ€—^(โˆ’๐Ÿ) โˆš๐Ÿ“

  1. Chapter 7 Class 12 Integrals
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo