Check sibling questions

ย 


Transcript

Ex 7.8, 11 โˆซ_2^3โ–’๐‘‘๐‘ฅ/(๐‘ฅ2 โˆ’ 1) Step 1 :- Let F(๐‘ฅ)=โˆซ1โ–’๐‘‘๐‘ฅ/(๐‘ฅ^2 โˆ’ 1) We can write integrate as 1/(๐‘ฅ^2 โˆ’ 1)=1/((๐‘ฅ โˆ’ 1) (๐‘ฅ + 1) ) 1/((๐‘ฅ โˆ’ 1) (๐‘ฅ + 1) )=A/(๐‘ฅ โˆ’ 1)+B/( (๐‘ฅ + 1) ) 1/((๐‘ฅ โˆ’ 1) (๐‘ฅ + 1) )=(A(๐‘ฅ + 1) + B(๐‘ฅ โˆ’ 1))/(๐‘ฅ โˆ’ 1)(๐‘ฅ + 1) By Canceling denominator 1=A(๐‘ฅ+1)+B(๐‘ฅโˆ’1) Putting ๐‘ฅ=โˆ’1 1=A(โˆ’1+1)+B(โˆ’1โˆ’1) 1 =A ร—0+=B(โˆ’2) 1=โˆ’2B B=(โˆ’1)/( 2) Similarly putting ๐‘ฅ=1 1=A(1+1)+B(1โˆ’1) 1 =A(2)+Bร—0 1=2A A= 1/2 Therefore, โˆซ1โ–’ใ€–1/(๐‘ฅโˆ’1)(๐‘ฅ+1) =โˆซ1โ–’ใ€–(1 ๐‘‘๐‘ฅ)/2(๐‘ฅโˆ’1) +โˆซ1โ–’ใ€–(โˆ’1)/( 2) 1/((๐‘ฅ + 1) ) ๐‘‘๐‘ฅใ€—ใ€—ใ€— =1/2 [โˆซ1โ–’ใ€–1/((๐‘ฅโˆ’1) ) ๐‘‘๐‘ฅโˆ’โˆซ1โ–’๐‘‘๐‘ฅ/( ๐‘ฅ+1)ใ€—] =1/2 [๐‘™๐‘œ๐‘”|๐‘ฅโˆ’1|โˆ’๐‘™๐‘œ๐‘”|๐‘ฅ+1|] =1/2 ๐‘™๐‘œ๐‘”|(๐‘ฅ โˆ’ 1)/(๐‘ฅ + 1)| Hence F(๐‘ฅ)=1/2 ๐‘™๐‘œ๐‘”|(๐‘ฅ โˆ’ 1)/(๐‘ฅ + 1)| Step 2 :- โˆซ_2^3โ–’ใ€–1/(1โˆ’๐‘ฅ^2 ) ๐‘‘๐‘ฅ=๐น(3)โˆ’๐น(2) ใ€— =1/2 ๐‘™๐‘œ๐‘”|(3โˆ’1)/(3+1)|โˆ’1/2 ๐‘™๐‘œ๐‘”|(2โˆ’1)/(2+1)| =1/2 ๐‘™๐‘œ๐‘”(2/4)โˆ’1/2 ๐‘™๐‘œ๐‘”(1/3) =1/2 ๐‘™๐‘œ๐‘”[(1/2)/(1/3)] =๐Ÿ/๐Ÿ ๐’๐’๐’ˆ ๐Ÿ‘/๐Ÿ

  1. Chapter 7 Class 12 Integrals
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo