Check sibling questions

 


Transcript

Example 28 Find absolute maximum and minimum values of a function f given by f (𝑥) = 〖12 𝑥〗^(4/3) – 〖 6𝑥〗^(1/3) , 𝑥 ∈ [ – 1, 1] f (𝑥) = 〖12 𝑥〗^(4/3) – 〖 6𝑥〗^(1/3) Finding f’(𝒙) f’(𝑥)=𝑑(12𝑥^(4/3) − 6𝑥^(1/3) )/𝑑𝑥 = 12 × 4/3 𝑥^(4/3 −1)−6 × 1/3 𝑥^(1/3 −1) = 4 × 4 𝑥^((4 − 3)/3) −2𝑥^((1 − 3)/3) = 16 𝑥^(1/3) −2𝑥^((−2)/3) = 16 𝑥^(1/3) − 2/𝑥^(2/3) = (16𝑥^(1/3) × 𝑥^(2/3) − 2)/𝑥^(2/3) = (16𝑥^(1/3 + 2/3) − 2)/𝑥^(2/3) = (16𝑥^(3/3) − 2)/𝑥^(2/3) = (16𝑥 − 2)/𝑥^(2/3) = 𝟐(𝟖𝒙 − 𝟏)" " /𝒙^(𝟐/𝟑) Hence, f’(𝑥)=2(8𝑥 − 1)/𝑥^(2/3) Putting f’(𝒙)=𝟎 2(8𝑥 − 1)/𝑥^(2/3) =0 2(8𝑥−1)=0 ×𝑥^(2/3) 2(8𝑥−1)=0 8𝑥−1= 0 8𝑥=1 𝒙=𝟏/𝟖 Note that: Since f’(𝑥)=2(8𝑥 − 1)/𝑥^(2/3) f’(𝑥) is not defined at 𝒙= 0 𝒙=𝟏/𝟖 & 0 are critical points Since, we are given interval [−𝟏 , 𝟏] Hence calculating f(𝑥) at 𝑥=−𝟏, 0, 1/8, 𝟏 Hence, Absolute maximum value of f(x) is 18 at 𝒙 = –1 & Absolute minimum value of f(x) is (−𝟗)/𝟒 at 𝒙 = 𝟏/𝟖

  1. Chapter 6 Class 12 Application of Derivatives
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo