Last updated at Dec. 16, 2024 by Teachoo
Example 3 A stone is dropped into a quiet lake and waves move in circles at a speed of 4 cm per second. At the instant, when the radius of the circular wave is 10 cm, how fast is the enclosed area increasing?Let r be the radius of circle & A be the Area of circle Given that When stone dropped into a lake wavers movie in circle at speed to 4 cm per sec. i.e. Radius of circle increasing at a rate of 4 cm / sec. i.e. 𝒅𝒓/𝒅𝒕 = 4 cm/sec We need to calculate how fast area increasing when waves is 10 cm i.e. we need to calculate 𝒅𝑨/𝒅𝒕 at r = 10 We know that Area of circle is πr2 Now 𝑑𝐴/𝑑𝑡 = (𝑑(𝜋𝑟2))/𝑑𝑡 =𝜋 (𝑑(𝑟2))/𝑑𝑡 = π [𝑑(𝑟2)/𝑑𝑡 × 𝑑𝑟/𝑑𝑟] = π [𝑑𝑟2/𝑑𝑟 × 𝑑𝑟/𝑑𝑡] = π [2𝑟 × 𝒅𝒓/𝒅𝒕] = π [2𝑟 × 𝟒] = 8πr When r = 10 ├ 𝑑𝐴/𝑑𝑡┤|_(𝑟 =10) = 8π × 10 ├ 𝑑𝐴/𝑑𝑡┤|_(𝑟 =10) =80𝜋 Since Area is in cm2 & time is in sec 𝑑𝐴/𝑑𝑡 = 80𝝅 𝒄𝒎𝟐/𝒔𝒆𝒄 Hence the area is increasing at the rate of 80 π cm2/sec,
Examples
Example 2
Example 3 You are here
Example 4 Important
Example 5
Example 6
Example 7
Example 8 Important
Example 9 Important
Example 10
Example 11 Important
Example 12
Example 13 Important
Example 14
Example 15
Example 16 Important
Example 17
Example 18 Important
Example 19
Example 20 Important
Example 21 Important
Example 22
Example 23 Important
Example 24
Example 25 Important
Example 26 Important
Example 27
Example 28 Important
Example 29 Important
Example 30 Important
Example 31 Important
Example 32 Important
Example 33 Important
Example 34 Important
Example 35
Example 36 Important
Example 37
Question 1
Question 2
Question 3
Question 4 Important
Question 5
Question 6
Question 7
Question 8
Question 9
Question 10
Question 11
Question 12
Question 13 Important
Question 14 Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo