Check sibling questions


Transcript

Ex 7.5, 20 Integrate the function 1/(๐‘ฅ(๐‘ฅ4โˆ’1) ) 1/(๐‘ฅ(๐‘ฅ4 โˆ’ 1) ) Multiplying integrand by ๐‘ฅ^3/๐‘ฅ^3 = 1/(๐‘ฅ(๐‘ฅ^4 โˆ’ 1) ) ร— ๐‘ฅ^3/๐‘ฅ^3 = ๐‘ฅ^3/(๐‘ฅ^4 (๐‘ฅ^4 โˆ’ 1) ) Let t = ๐‘ฅ^4 Differentiating both sides ๐‘ค.๐‘Ÿ.๐‘ก.๐‘ฅ ๐‘‘๐‘ก/๐‘‘๐‘ฅ = 4๐‘ฅ^3 ๐‘‘๐‘ก/(4๐‘ฅ^3 ) = ๐‘‘๐‘ฅ Substituting value of ๐‘ก = ๐‘ฅ^4 & ๐‘‘๐‘ฅ = ๐‘‘๐‘ก/(4๐‘ฅ^3 ) " " โˆซ1โ–’๐‘ฅ^3/(๐‘ฅ^4 (๐‘ฅ^4โˆ’ 1) ) ๐‘‘๐‘ฅ = โˆซ1โ–’๐‘ฅ^3/(๐‘ก(๐‘ก โˆ’ 1) ) ๐‘‘๐‘ก/(4๐‘ฅ^3 ) " " = 1/4 โˆซ1โ–’๐‘‘๐‘ก/(๐‘ก(๐‘ก โˆ’ 1) ) We can write integrand as 1/(๐‘ก(๐‘ก โˆ’ 1) ) = ๐ด/๐‘ก + ๐ต/(๐‘ก โˆ’ 1) 1/(๐‘ก(๐‘ก โˆ’ 1) ) = (๐ด(๐‘ก โˆ’ 1) + ๐ต ๐‘ก)/๐‘ก(๐‘ก โˆ’ 1) Cancelling denominator 1 = ๐ด(๐‘กโˆ’1)+๐ต๐‘ก โ€ฆ(1) Putting t = 0 in (1) 1 = ๐ด(0โˆ’1)+๐ตร—0 1 = ๐ดร—(โˆ’1) 1 = โˆ’๐ด ๐ด = โˆ’1 Putting t = 1 in (1) 1 = A(tโˆ’1)+Bt 1 = ๐ด(1โˆ’1)+๐ตร—1 1 = ๐ดร—0+๐ต 1 = ๐ต ๐ต = 1 Therefore 1/4 โˆซ1โ–’1/(๐‘ก(๐‘ก โˆ’ 1) ) ๐‘‘๐‘ก = โˆซ1โ–’(โˆ’1)/(๐‘ก ) ๐‘‘๐‘ก + โˆซ1โ–’1/(๐‘ก โˆ’ 1 ) = โˆ’ใ€–log ใ€—โก|๐‘ก|+ใ€–log ใ€—โก|๐‘กโˆ’1|+๐ถ = ใ€–log ใ€—โก|(๐‘ก โˆ’ 1)/๐‘ก|+๐ถ Putting back t =ใ€– ๐‘ฅใ€—^4 = ๐Ÿ/๐Ÿ’ ใ€–๐ฅ๐จ๐  ใ€—โก|(๐’™^๐Ÿ’ โˆ’ ๐Ÿ)/๐’™^๐Ÿ’ |+๐‘ช ("As " ๐‘™๐‘œ๐‘” ๐ดโˆ’๐‘™๐‘œ๐‘” ๐ต" = " ๐‘™๐‘œ๐‘” ๐ด/๐ต)

  1. Chapter 7 Class 12 Integrals
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo