Ex 7.5, 20 - Chapter 7 Class 12 Integrals
Last updated at Dec. 16, 2024 by Teachoo
Last updated at Dec. 16, 2024 by Teachoo
Ex 7.5, 20 Integrate the function 1/(๐ฅ(๐ฅ4โ1) ) 1/(๐ฅ(๐ฅ4 โ 1) ) Multiplying integrand by ๐ฅ^3/๐ฅ^3 = 1/(๐ฅ(๐ฅ^4 โ 1) ) ร ๐ฅ^3/๐ฅ^3 = ๐ฅ^3/(๐ฅ^4 (๐ฅ^4 โ 1) ) Let t = ๐ฅ^4 Differentiating both sides ๐ค.๐.๐ก.๐ฅ ๐๐ก/๐๐ฅ = 4๐ฅ^3 ๐๐ก/(4๐ฅ^3 ) = ๐๐ฅ Substituting value of ๐ก = ๐ฅ^4 & ๐๐ฅ = ๐๐ก/(4๐ฅ^3 ) " " โซ1โ๐ฅ^3/(๐ฅ^4 (๐ฅ^4โ 1) ) ๐๐ฅ = โซ1โ๐ฅ^3/(๐ก(๐ก โ 1) ) ๐๐ก/(4๐ฅ^3 ) " " = 1/4 โซ1โ๐๐ก/(๐ก(๐ก โ 1) ) We can write integrand as 1/(๐ก(๐ก โ 1) ) = ๐ด/๐ก + ๐ต/(๐ก โ 1) 1/(๐ก(๐ก โ 1) ) = (๐ด(๐ก โ 1) + ๐ต ๐ก)/๐ก(๐ก โ 1) Cancelling denominator 1 = ๐ด(๐กโ1)+๐ต๐ก โฆ(1) Putting t = 0 in (1) 1 = ๐ด(0โ1)+๐ตร0 1 = ๐ดร(โ1) 1 = โ๐ด ๐ด = โ1 Putting t = 1 in (1) 1 = A(tโ1)+Bt 1 = ๐ด(1โ1)+๐ตร1 1 = ๐ดร0+๐ต 1 = ๐ต ๐ต = 1 Therefore 1/4 โซ1โ1/(๐ก(๐ก โ 1) ) ๐๐ก = โซ1โ(โ1)/(๐ก ) ๐๐ก + โซ1โ1/(๐ก โ 1 ) = โใlog ใโก|๐ก|+ใlog ใโก|๐กโ1|+๐ถ = ใlog ใโก|(๐ก โ 1)/๐ก|+๐ถ Putting back t =ใ ๐ฅใ^4 = ๐/๐ ใ๐ฅ๐จ๐ ใโก|(๐^๐ โ ๐)/๐^๐ |+๐ช ("As " ๐๐๐ ๐ดโ๐๐๐ ๐ต" = " ๐๐๐ ๐ด/๐ต)
Ex 7.5
Ex 7.5, 2
Ex 7.5, 3 Important
Ex 7.5, 4
Ex 7.5, 5
Ex 7.5, 6 Important
Ex 7.5, 7 Important
Ex 7.5, 8
Ex 7.5, 9 Important
Ex 7.5, 10
Ex 7.5, 11 Important
Ex 7.5, 12
Ex 7.5, 13 Important
Ex 7.5, 14 Important
Ex 7.5, 15
Ex 7.5, 16 Important
Ex 7.5, 17
Ex 7.5, 18 Important
Ex 7.5, 19
Ex 7.5, 20 Important You are here
Ex 7.5, 21 Important
Ex 7.5, 22 (MCQ)
Ex 7.5, 23 (MCQ) Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo