Check sibling questions


Transcript

Ex 7.5, 9 Integrate the function (3π‘₯ + 5)/(π‘₯^3 βˆ’ π‘₯^2 βˆ’ π‘₯ + 1) Let I=∫1β–’(3π‘₯ + 5)/(π‘₯^3 βˆ’ π‘₯^2 βˆ’ π‘₯ + 1) 𝑑π‘₯ We can write integrand as (3π‘₯ + 5)/(π‘₯^3 βˆ’ π‘₯^2 βˆ’ π‘₯ + 1)=(3π‘₯ + 5)/(π‘₯ βˆ’ 1)(π‘₯^2 βˆ’ 1) =(3π‘₯ + 5)/(π‘₯ βˆ’ 1)(π‘₯^2 βˆ’ 1^2 ) =(3π‘₯ + 5)/((π‘₯ βˆ’ 1) (π‘₯ βˆ’ 1) (π‘₯ + 1) ) =(3π‘₯ + 5)/γ€–(π‘₯ + 1) (π‘₯ βˆ’ 1)γ€—^2 Rough π‘₯^3βˆ’π‘₯^2βˆ’π‘₯+1 Put π‘₯=1 1^3βˆ’1^2βˆ’1+1 =1βˆ’1βˆ’1+1 =0 So, π‘₯βˆ’1 is a factor of π‘₯^3βˆ’π‘₯^2βˆ’π‘₯+1 We can write it as (3π‘₯ + 5)/γ€–(π‘₯ + 1) (π‘₯ βˆ’ 1)γ€—^2 =𝐴/((π‘₯ + 1) ) + 𝐡/((π‘₯ βˆ’ 1) ) + 𝐢/(π‘₯ βˆ’ 1)^2 (3π‘₯ + 5)/γ€–(π‘₯ + 1) (π‘₯ βˆ’ 1)γ€—^2 =(𝐴(π‘₯ βˆ’ 1)^2 + 𝐡(π‘₯ + 1)(π‘₯ βˆ’ 1) + 𝐢(π‘₯ + 1))/(π‘₯ + 1)(π‘₯ βˆ’ 1)(π‘₯ βˆ’ 1) (3π‘₯ + 5)/γ€–(π‘₯ + 1) (π‘₯ βˆ’ 1)γ€—^2 =(𝐴(π‘₯ βˆ’ 1)^2 + 𝐡(π‘₯^2 βˆ’ 1) + 𝐢(π‘₯ + 1))/((π‘₯ + 1) (π‘₯ βˆ’ 1)^2 ) By Cancelling denominator 3π‘₯+5=𝐴(π‘₯βˆ’1)^2+𝐡(π‘₯^2βˆ’1)+𝐢(π‘₯+1) Put π‘₯=1 in (1) 3Γ—1+5=𝐴(1βˆ’1)^2+𝐡(1^2βˆ’1)+𝐢(1+1) 8=𝐴×0+ 𝐡×0+𝐢×2 …(1) 8=2𝐢 𝐢=4 Putting π‘₯=βˆ’1 in (1) 3π‘₯+5=𝐴(π‘₯βˆ’1)^2+𝐡(π‘₯^2βˆ’1)+𝐢(π‘₯+1) 3(βˆ’1)+5=𝐴(βˆ’1βˆ’1)^2+𝐡((βˆ’1)^2βˆ’1)+𝐢(βˆ’1+1) βˆ’3+5=𝐴(βˆ’2)^2+𝐡(1βˆ’1)+𝐢(0) 2=4𝐴+𝐡×0+𝐢×0 2=4𝐴 𝐴=1/2 Putting x = 0 in (1) 3π‘₯+5=𝐴(π‘₯βˆ’1)^2+𝐡(π‘₯^2βˆ’1)+𝐢(π‘₯+1) 3(0)+5=𝐴(0βˆ’1)^2+𝐡(0βˆ’1)+𝐢(0+1) 5=π΄βˆ’π΅+𝐢 5= 1/2 βˆ’π΅+4 5= βˆ’π΅+9/2 𝐡=9/2 βˆ’5 𝐡=(βˆ’1)/2 Hence, we can our equation as write (3π‘₯ + 5)/γ€–(π‘₯ + 1) (π‘₯ βˆ’ 1)γ€—^2 =𝐴/((π‘₯ + 1) ) + 𝐡/((π‘₯ βˆ’ 1) ) + 𝐢/(π‘₯ βˆ’ 1)^2 (3π‘₯ + 5)/γ€–(π‘₯ + 1) (π‘₯ βˆ’ 1)γ€—^2 =((1/2))/((π‘₯ + 1) ) + (βˆ’ 1/2)/((π‘₯ βˆ’ 1) ) + 4/(π‘₯ βˆ’ 1)^2 (3π‘₯ + 5)/γ€–(π‘₯ + 1) (π‘₯ βˆ’ 1)γ€—^2 =1/2(π‘₯ + 1) βˆ’ 1/2(π‘₯ βˆ’ 1) + 4/(π‘₯ βˆ’ 1)^2 Integrating 𝑀.π‘Ÿ.𝑑.π‘₯ I=∫1β–’(3π‘₯ + 5)/(π‘₯^3 βˆ’ π‘₯^2 βˆ’ π‘₯ + 1) 𝑑π‘₯ =∫1β–’(1/2(π‘₯ + 1) βˆ’ 1/2(π‘₯ βˆ’ 1) + 4/(π‘₯ βˆ’ 1)^2 ) 𝑑π‘₯ =1/2 ∫1▒𝑑π‘₯/(π‘₯ + 1) βˆ’ 1/2 ∫1▒𝑑π‘₯/((π‘₯ βˆ’ 1) )+4∫1▒𝑑π‘₯/(π‘₯ βˆ’ 1)^2 Hence I=I1βˆ’I2+I3 Now, I1=1/2 ∫1β–’1/(π‘₯ + 1) 𝑑π‘₯ =1/2 log⁑|π‘₯+1|+𝐢1 Also, I2 =1/2 ∫1β–’1/(π‘₯ βˆ’ 1) 𝑑π‘₯ = 1/2 log⁑|π‘₯βˆ’1|+𝐢2 And, I3=∫1β–’4/(π‘₯ βˆ’ 1)^2 𝑑π‘₯ =4∫1β–’1/(π‘₯ βˆ’ 1)^2 𝑑π‘₯ =4∫1β–’(π‘₯ βˆ’ 1)^(βˆ’2) 𝑑π‘₯ =(4(π‘₯ βˆ’ 1)^(βˆ’2 + 1))/(βˆ’2 + 1) +𝐢3 =(4(π‘₯ βˆ’ 1)^(βˆ’1))/(βˆ’1) +𝐢3 =(βˆ’ 4)/(π‘₯ βˆ’ 1)+𝐢3 Therefore I=I1βˆ’I2+I3 I=1/2 log⁑|π‘₯+1|+𝐢1βˆ’ 1/2 log⁑|π‘₯βˆ’1|βˆ’πΆ2+(βˆ’ 4)/(π‘₯ βˆ’ 1)+𝐢3 =1/2 log⁑|π‘₯+1|+βˆ’ 1/2 log⁑|π‘₯βˆ’1|βˆ’4/(π‘₯ βˆ’ 1) +𝐢1βˆ’πΆ2+𝐢3 =1/2 [log⁑|π‘₯+1|βˆ’log⁑|π‘₯βˆ’1| ]βˆ’4/(π‘₯ βˆ’ 1) +𝐢 =𝟏/𝟐 π’π’π’ˆβ‘|(𝒙 + 𝟏)/(𝒙 βˆ’ 𝟏)|βˆ’ πŸ’/(𝒙 βˆ’ 𝟏) +π‘ͺ

  1. Chapter 7 Class 12 Integrals
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo