Ex 7.5, 6 - Chapter 7 Class 12 Integrals
Last updated at Dec. 16, 2024 by Teachoo
Last updated at Dec. 16, 2024 by Teachoo
Ex 7.5, 6 Integrate the function (1 โ ๐ฅ2)/(๐ฅ(1 โ 2๐ฅ)) โซ1โ(1 โ ๐ฅ2)/(๐ฅ(1 โ 2๐ฅ)) ๐๐ฅ= โซ1โ(1 โ ๐ฅ^2)/(๐ฅ โ 2๐ฅ^2 ) ๐๐ฅ =โซ1โ(1/2 + (โ ๐ฅ/2 + 1)/(โ2๐ฅ^2+ ๐ฅ)) ๐๐ฅ =1/2 โซ1โ๐๐ฅ+1/2 โซ1โ(โ๐ฅ + 2)/(โ2๐ฅ^2+ ๐ฅ) ๐๐ฅ =1/2 โซ1โ๐๐ฅโ1/2 โซ1โ(๐ฅ โ 2)/๐ฅ(1 โ 2๐ฅ) ๐๐ฅ =1/2 โซ1โ๐๐ฅโ1/2 โซ1โ(๐ฅ โ 2)/๐ฅ(2๐ฅ โ 1) ๐๐ฅ โ2๐ฅ^2+๐ฅ โ๐ฅ^2+๐ฅ/2 Now Solving (๐ฅ โ 2)/(๐ฅ (2๐ฅ โ 1) ) = ๐ด/๐ฅ + ๐ต/(2๐ฅ โ 1) (๐ฅ โ 2)/(๐ฅ (2๐ฅ โ 1) ) = (๐ด(2๐ฅ โ 1) + ๐ต๐ฅ)/(๐ฅ (2๐ฅ โ 1) ) Cancelling denominator ๐ฅโ2=๐ด(2๐ฅโ1)+๐ต๐ฅ Putting x = 0 in (2) ๐ฅโ2=๐ด(2๐ฅโ1)+๐ต๐ฅ 0โ2 = ๐ด(2ร0โ1) + ๐ตร0 โ2 = A(โ1) โฆ(2) โ2 = โ๐ด ๐ด = 2 Similarly Putting x = 1/2 in (2) ๐ฅโ2=๐ด(2๐ฅโ1)+๐ต๐ฅ 1/2 โ 2 = A(1/2ร2โ1)+๐ตร1/2 (โ3)/2 = A(1โ1)+๐ตร1/2 (โ3)/2 = Aร0+ ๐ต/2 (โ3)/2 = ๐ต/2 ๐ต = โ3 Hence we can write it as (๐ฅ โ 2)/(๐ฅ (2๐ฅ โ 1) ) = ๐ด/๐ฅ + ๐ต/(2๐ฅ โ 1) (๐ฅ โ 2)/(๐ฅ (2๐ฅ โ 1) ) = 2/๐ฅ + ((โ3))/(2๐ฅ โ 1) = 2/๐ฅ โ 3/(2๐ฅ โ 1) Therefore , from (1) we get, โซ1โ(1 โ ๐ฅ^2)/๐ฅ(1 โ 2๐ฅ) =1/2 โซ1โ๐๐ฅ+ 1/2 โซ1โ(2/๐ฅ โ 3/(2๐ฅ โ 1)) ๐๐ฅ =1/2 โซ1โ๐๐ฅ+ 2/2 โซ1โใ๐๐ฅ/๐ฅ โ3/2ใ โซ1โ๐๐ฅ/(2๐ฅ โ 1) =1/2 โซ1โ๐๐ฅ+โซ1โใ๐๐ฅ/๐ฅ + 3/2ใ โซ1โ๐๐ฅ/(1 โ 2๐ฅ) =1/2 ๐ฅ+logโก|๐ฅ|+3/2 logโก|1 โ 2๐ฅ|/(โ2) +๐ถ =๐/๐ +๐๐๐โก|๐|โ๐/๐ ๐๐๐โก|๐โ๐๐|+๐ช
Ex 7.5
Ex 7.5, 2
Ex 7.5, 3 Important
Ex 7.5, 4
Ex 7.5, 5
Ex 7.5, 6 Important You are here
Ex 7.5, 7 Important
Ex 7.5, 8
Ex 7.5, 9 Important
Ex 7.5, 10
Ex 7.5, 11 Important
Ex 7.5, 12
Ex 7.5, 13 Important
Ex 7.5, 14 Important
Ex 7.5, 15
Ex 7.5, 16 Important
Ex 7.5, 17
Ex 7.5, 18 Important
Ex 7.5, 19
Ex 7.5, 20 Important
Ex 7.5, 21 Important
Ex 7.5, 22 (MCQ)
Ex 7.5, 23 (MCQ) Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo