Check sibling questions


Transcript

Ex 7.5, 6 Integrate the function (1 โˆ’ ๐‘ฅ2)/(๐‘ฅ(1 โˆ’ 2๐‘ฅ)) โˆซ1โ–’(1 โˆ’ ๐‘ฅ2)/(๐‘ฅ(1 โˆ’ 2๐‘ฅ)) ๐‘‘๐‘ฅ= โˆซ1โ–’(1 โˆ’ ๐‘ฅ^2)/(๐‘ฅ โˆ’ 2๐‘ฅ^2 ) ๐‘‘๐‘ฅ =โˆซ1โ–’(1/2 + (โˆ’ ๐‘ฅ/2 + 1)/(โˆ’2๐‘ฅ^2+ ๐‘ฅ)) ๐‘‘๐‘ฅ =1/2 โˆซ1โ–’๐‘‘๐‘ฅ+1/2 โˆซ1โ–’(โˆ’๐‘ฅ + 2)/(โˆ’2๐‘ฅ^2+ ๐‘ฅ) ๐‘‘๐‘ฅ =1/2 โˆซ1โ–’๐‘‘๐‘ฅโˆ’1/2 โˆซ1โ–’(๐‘ฅ โˆ’ 2)/๐‘ฅ(1 โˆ’ 2๐‘ฅ) ๐‘‘๐‘ฅ =1/2 โˆซ1โ–’๐‘‘๐‘ฅโˆ’1/2 โˆซ1โ–’(๐‘ฅ โˆ’ 2)/๐‘ฅ(2๐‘ฅ โˆ’ 1) ๐‘‘๐‘ฅ โˆ’2๐‘ฅ^2+๐‘ฅ โˆ’๐‘ฅ^2+๐‘ฅ/2 Now Solving (๐‘ฅ โˆ’ 2)/(๐‘ฅ (2๐‘ฅ โˆ’ 1) ) = ๐ด/๐‘ฅ + ๐ต/(2๐‘ฅ โˆ’ 1) (๐‘ฅ โˆ’ 2)/(๐‘ฅ (2๐‘ฅ โˆ’ 1) ) = (๐ด(2๐‘ฅ โˆ’ 1) + ๐ต๐‘ฅ)/(๐‘ฅ (2๐‘ฅ โˆ’ 1) ) Cancelling denominator ๐‘ฅโˆ’2=๐ด(2๐‘ฅโˆ’1)+๐ต๐‘ฅ Putting x = 0 in (2) ๐‘ฅโˆ’2=๐ด(2๐‘ฅโˆ’1)+๐ต๐‘ฅ 0โˆ’2 = ๐ด(2ร—0โˆ’1) + ๐ตร—0 โˆ’2 = A(โˆ’1) โ€ฆ(2) โˆ’2 = โˆ’๐ด ๐ด = 2 Similarly Putting x = 1/2 in (2) ๐‘ฅโˆ’2=๐ด(2๐‘ฅโˆ’1)+๐ต๐‘ฅ 1/2 โˆ’ 2 = A(1/2ร—2โˆ’1)+๐ตร—1/2 (โˆ’3)/2 = A(1โˆ’1)+๐ตร—1/2 (โˆ’3)/2 = Aร—0+ ๐ต/2 (โˆ’3)/2 = ๐ต/2 ๐ต = โˆ’3 Hence we can write it as (๐‘ฅ โˆ’ 2)/(๐‘ฅ (2๐‘ฅ โˆ’ 1) ) = ๐ด/๐‘ฅ + ๐ต/(2๐‘ฅ โˆ’ 1) (๐‘ฅ โˆ’ 2)/(๐‘ฅ (2๐‘ฅ โˆ’ 1) ) = 2/๐‘ฅ + ((โˆ’3))/(2๐‘ฅ โˆ’ 1) = 2/๐‘ฅ โˆ’ 3/(2๐‘ฅ โˆ’ 1) Therefore , from (1) we get, โˆซ1โ–’(1 โˆ’ ๐‘ฅ^2)/๐‘ฅ(1 โˆ’ 2๐‘ฅ) =1/2 โˆซ1โ–’๐‘‘๐‘ฅ+ 1/2 โˆซ1โ–’(2/๐‘ฅ โˆ’ 3/(2๐‘ฅ โˆ’ 1)) ๐‘‘๐‘ฅ =1/2 โˆซ1โ–’๐‘‘๐‘ฅ+ 2/2 โˆซ1โ–’ใ€–๐‘‘๐‘ฅ/๐‘ฅ โˆ’3/2ใ€— โˆซ1โ–’๐‘‘๐‘ฅ/(2๐‘ฅ โˆ’ 1) =1/2 โˆซ1โ–’๐‘‘๐‘ฅ+โˆซ1โ–’ใ€–๐‘‘๐‘ฅ/๐‘ฅ + 3/2ใ€— โˆซ1โ–’๐‘‘๐‘ฅ/(1 โˆ’ 2๐‘ฅ) =1/2 ๐‘ฅ+logโก|๐‘ฅ|+3/2 logโก|1 โˆ’ 2๐‘ฅ|/(โˆ’2) +๐ถ =๐’™/๐Ÿ +๐’๐’๐’ˆโก|๐’™|โˆ’๐Ÿ‘/๐Ÿ’ ๐’๐’๐’ˆโก|๐Ÿโˆ’๐Ÿ๐’™|+๐‘ช

  1. Chapter 7 Class 12 Integrals
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo