Check sibling questions


Transcript

Ex 7.5, 2 1/(๐‘ฅ2โˆ’ 9) Solving integrand 1/(๐‘ฅ2โˆ’ 9)=1/((๐‘ฅ โˆ’ 3) (๐‘ฅ + 3) ) We can write it as 1/((๐‘ฅ โˆ’ 3) (๐‘ฅ + 3) )=๐ด/((๐‘ฅ โˆ’ 3) ) + ๐ต/((๐‘ฅ + 3) ) 1/((๐‘ฅ โˆ’ 3) (๐‘ฅ + 3) )=(๐ด(๐‘ฅ + 3) + ๐ต(๐‘ฅ โˆ’ 3))/((๐‘ฅ โˆ’ 3) (๐‘ฅ + 3) ) " " Cancelling denominator 1 = ๐ด(๐‘ฅ + 3) + ๐ต(๐‘ฅ โˆ’ 3) Putting ๐‘ฅ = 3 in (1) 1 = ๐ด(๐‘ฅ+3)+๐ต(๐‘ฅโˆ’3) 1 = ๐ด(3+3) + ๐ต(3โˆ’3) 1 = ๐ดร—6+ ๐ตร—0 1 = 6๐ด ๐ด = 1/6 Similarly Putting y=โˆ’3 in (1) 1 = ๐ด(โˆ’3+3) + ๐ต(โˆ’3โˆ’3) 1 = ๐ดร—0+ ๐ตร—(โˆ’6) 1 = โˆ’6๐ต ๐ต = (โˆ’1)/6 Hence we can write it as 1/((๐‘ฅ โˆ’ 3) (๐‘ฅ + 3) ) = 1/6(๐‘ฅ โˆ’ 3) โˆ’ 1/6(๐‘ฅ + 3) Therefore โˆซ1โ–’1/((๐‘ฅ โˆ’ 3) (๐‘ฅ + 3) ) ๐‘‘๐‘ฅ = 1/6 โˆซ1โ–’1/((๐‘ฅ โˆ’ 3) ) ๐‘‘๐‘ฅ โˆ’ 1/6 โˆซ1โ–’1/((๐‘ฅ + 3) ) ๐‘‘๐‘ฅ = 1/6 ใ€–log ใ€—โก|๐‘ฅโˆ’3|โˆ’ 1/6 ใ€–log ใ€—โก|๐‘ฅ+3|+๐ถ = 1/6 (ใ€–log ใ€—โก|๐‘ฅโˆ’3|โˆ’ใ€–log ใ€—โก|๐‘ฅ+3| )+๐ถ = ๐Ÿ/๐Ÿ” ใ€–๐’๐’๐’ˆ ใ€—โก|(๐’™ โˆ’ ๐Ÿ‘)/(๐’™ + ๐Ÿ‘)|+๐‘ช

  1. Chapter 7 Class 12 Integrals
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo