Last updated at Dec. 16, 2024 by Teachoo
Ex 7.5, 1 ๐ฅ/((๐ฅ + 1) (๐ฅ + 2) ) Solving integrand ๐ฅ/((๐ฅ + 1) (๐ฅ + 2) ) We can write it as ๐/((๐ + ๐) (๐ + ๐) ) " " = ๐จ/((๐ + ๐) ) + ๐ฉ/((๐ + ๐) ) ๐ฅ/((๐ฅ + 1) (๐ฅ + 2) ) " " = (๐ด(๐ฅ + 2) + ๐ต (๐ฅ + 1))/((๐ฅ + 1) (๐ฅ + 2) ) Cancelling denominator ๐ = ๐จ(๐+๐) + ๐ฉ(๐+๐) Putting ๐=โ๐ in (1) โ1=๐ด(โ1+2) + ๐ต(โ1+1) โ1=๐ด ร 1+ ๐ต ร 0 โ1=๐ด ๐จ=โ๐ Putting ๐=โ๐ in (1) โ2 = ๐ด(โ2+2) + ๐ต(โ2+1) โ2 = ๐ด ร 0+ ๐ต ร (โ1) โ2 = โ ๐ต ๐ฉ = ๐ Hence we can write it as ๐/((๐ + ๐) (๐ + ๐) ) = (โ๐)/((๐ + ๐) ) + ๐/((๐ + ๐) ) Therefore โซ1โ๐/((๐ + ๐) (๐ + ๐) ) ๐ ๐ = โซ1โ(โ1)/((๐ฅ + 1) ) ๐๐ฅ + โซ1โ2/((๐ฅ + 2) ) ๐๐ฅ = โ1โซ1โ1/((๐ฅ + 1) ) ๐๐ฅ + 2โซ1โ1/((๐ฅ + 2) ) ๐๐ฅ = โใ๐ฅ๐จ๐ ใโก|๐+๐|+๐ ใ๐ฅ๐จ๐ ใโก|๐+๐|+๐ช = โใlog ใโก|๐ฅ+1|+ใlog ใโกใ|๐ฅ+2|^2 ใ+๐ถ = ใlog ใโก|(๐ฅ + 2)^2/(๐ฅ + 1)|+๐ถ = ใ๐ฅ๐จ๐ ใโกใ(๐ + ๐)^๐/|๐ + ๐| ใ +๐ช As ๐๐๐ ๐จโ๐๐๐ ๐ฉ=๐๐๐ ๐ด/๐ต As (๐ฅ+2)^2is always positive
Ex 7.5
Ex 7.5, 2
Ex 7.5, 3 Important
Ex 7.5, 4
Ex 7.5, 5
Ex 7.5, 6 Important
Ex 7.5, 7 Important
Ex 7.5, 8
Ex 7.5, 9 Important
Ex 7.5, 10
Ex 7.5, 11 Important
Ex 7.5, 12
Ex 7.5, 13 Important
Ex 7.5, 14 Important
Ex 7.5, 15
Ex 7.5, 16 Important
Ex 7.5, 17
Ex 7.5, 18 Important
Ex 7.5, 19
Ex 7.5, 20 Important
Ex 7.5, 21 Important
Ex 7.5, 22 (MCQ)
Ex 7.5, 23 (MCQ) Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo