Check sibling questions


Transcript

Ex 7.5, 1 ๐‘ฅ/((๐‘ฅ + 1) (๐‘ฅ + 2) ) Solving integrand ๐‘ฅ/((๐‘ฅ + 1) (๐‘ฅ + 2) ) We can write it as ๐’™/((๐’™ + ๐Ÿ) (๐’™ + ๐Ÿ) ) " " = ๐‘จ/((๐’™ + ๐Ÿ) ) + ๐‘ฉ/((๐’™ + ๐Ÿ) ) ๐‘ฅ/((๐‘ฅ + 1) (๐‘ฅ + 2) ) " " = (๐ด(๐‘ฅ + 2) + ๐ต (๐‘ฅ + 1))/((๐‘ฅ + 1) (๐‘ฅ + 2) ) Cancelling denominator ๐’™ = ๐‘จ(๐’™+๐Ÿ) + ๐‘ฉ(๐’™+๐Ÿ) Putting ๐’™=โˆ’๐Ÿ in (1) โˆ’1=๐ด(โˆ’1+2) + ๐ต(โˆ’1+1) โˆ’1=๐ด ร— 1+ ๐ต ร— 0 โˆ’1=๐ด ๐‘จ=โˆ’๐Ÿ Putting ๐’™=โˆ’๐Ÿ in (1) โˆ’2 = ๐ด(โˆ’2+2) + ๐ต(โˆ’2+1) โˆ’2 = ๐ด ร— 0+ ๐ต ร— (โˆ’1) โˆ’2 = โˆ’ ๐ต ๐‘ฉ = ๐Ÿ Hence we can write it as ๐’™/((๐’™ + ๐Ÿ) (๐’™ + ๐Ÿ) ) = (โˆ’๐Ÿ)/((๐’™ + ๐Ÿ) ) + ๐Ÿ/((๐’™ + ๐Ÿ) ) Therefore โˆซ1โ–’๐’™/((๐’™ + ๐Ÿ) (๐’™ + ๐Ÿ) ) ๐’…๐’™ = โˆซ1โ–’(โˆ’1)/((๐‘ฅ + 1) ) ๐‘‘๐‘ฅ + โˆซ1โ–’2/((๐‘ฅ + 2) ) ๐‘‘๐‘ฅ = โˆ’1โˆซ1โ–’1/((๐‘ฅ + 1) ) ๐‘‘๐‘ฅ + 2โˆซ1โ–’1/((๐‘ฅ + 2) ) ๐‘‘๐‘ฅ = โˆ’ใ€–๐ฅ๐จ๐  ใ€—โก|๐’™+๐Ÿ|+๐Ÿ ใ€–๐ฅ๐จ๐  ใ€—โก|๐’™+๐Ÿ|+๐‘ช = โˆ’ใ€–log ใ€—โก|๐‘ฅ+1|+ใ€–log ใ€—โกใ€–|๐‘ฅ+2|^2 ใ€—+๐ถ = ใ€–log ใ€—โก|(๐‘ฅ + 2)^2/(๐‘ฅ + 1)|+๐ถ = ใ€–๐ฅ๐จ๐  ใ€—โกใ€–(๐’™ + ๐Ÿ)^๐Ÿ/|๐’™ + ๐Ÿ| ใ€— +๐‘ช As ๐’๐’๐’ˆ ๐‘จโˆ’๐’๐’๐’ˆ ๐‘ฉ=๐‘™๐‘œ๐‘” ๐ด/๐ต As (๐‘ฅ+2)^2is always positive

  1. Chapter 7 Class 12 Integrals
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo