Check sibling questions


Transcript

Ex 7.4, 23 Integrate (5๐‘ฅ + 3)/โˆš(๐‘ฅ^2 + 4๐‘ฅ + 10) โˆซ1โ–’(5๐‘ฅ + 3)/โˆš(๐‘ฅ^2 + 4๐‘ฅ + 10) ๐‘‘๐‘ฅ =5โˆซ1โ–’(๐‘ฅ + 3/5)/โˆš(๐‘ฅ^2 + 4๐‘ฅ + 10) =5/2 โˆซ1โ–’(2๐‘ฅ + 6/5)/โˆš(๐‘ฅ^2 + 4๐‘ฅ + 10) =5/2 โˆซ1โ–’(2๐‘ฅ + 4 โˆ’ 4 + 6/5)/โˆš(๐‘ฅ^2 + 4๐‘ฅ + 10) =5/2 โˆซ1โ–’(2๐‘ฅ + 4 โˆ’ 14/5)/โˆš(๐‘ฅ^2 + 4๐‘ฅ + 10) Rough (๐‘ฅ^2+4๐‘ฅ+10)^โ€ฒ=2๐‘ฅ+4 =5/2 โˆซ1โ–’(2๐‘ฅ + 4)/โˆš(๐‘ฅ^2 + 4๐‘ฅ + 10) ๐‘‘๐‘ฅ+5/2 โˆซ1โ–’(โˆ’ 14/5)/โˆš(๐‘ฅ^2 + 4๐‘ฅ + 10) ๐‘‘๐‘ฅ =5/2 โˆซ1โ–’(2๐‘ฅ + 4)/โˆš(๐‘ฅ^2 + 4๐‘ฅ + 10) ๐‘‘๐‘ฅโˆ’7โˆซ1โ–’๐‘‘๐‘ฅ/โˆš(๐‘ฅ^2 + 4๐‘ฅ + 10) ๐‘‘๐‘ฅ Solving ๐‘ฐ๐Ÿ I1=5/2 โˆซ1โ–’( 2๐‘ฅ + 4)/โˆš(๐‘ฅ^2 + 4๐‘ฅ + 10) . ๐‘‘๐‘ฅ Let ๐‘ฅ^2 + 4๐‘ฅ + 10=๐‘ก Diff both sides w.r.t.x 2๐‘ฅ+4+0=๐‘‘๐‘ก/๐‘‘๐‘ฅ ๐‘‘๐‘ฅ=๐‘‘๐‘ก/(2๐‘ฅ + 4) Thus, our equation becomes I1=5/2 โˆซ1โ–’( 2๐‘ฅ + 4)/โˆš(๐‘ฅ^2 + 4๐‘ฅ + 10) . ๐‘‘๐‘ฅ Putting the value of (๐‘ฅ^2+4๐‘ฅ+10)=๐‘ก and ๐‘‘๐‘ฅ=๐‘‘๐‘ก/(2๐‘ฅ + 4) I1=5/2 โˆซ1โ–’(2๐‘ฅ + 4)/โˆš๐‘ก . ๐‘‘๐‘ฅ I1=5/2 โˆซ1โ–’(2๐‘ฅ + 4)/โˆš๐‘ก .๐‘‘๐‘ก/(2๐‘ฅ + 4) I1=5/2 โˆซ1โ–’1/โˆš๐‘ก . ๐‘‘๐‘ก I1=5/2 โˆซ1โ–’1/(๐‘ก)^(1/2) . ๐‘‘๐‘ก I1=5/2 โˆซ1โ–’(๐‘ก)^((โˆ’ 1)/2) . ๐‘‘๐‘ก I1=5/2 ใ€–๐‘ก ใ€—^((โˆ’1)/2 + 1)/((โˆ’1)/2 + 1) +๐ถ1 I1=5/2 (๐‘ก ^(1/2 ))/(1/2) +๐ถ1 I1=5 ๐‘ก ^(1/2 )+๐ถ1 I1=5 โˆš๐‘ก+๐ถ1 I1=5 โˆš(๐‘ฅ^2+4๐‘ฅ+10)+๐ถ1 (Using ๐‘ก=๐‘ฅ^2+4๐‘ฅ+1) Solving ๐‘ฐ๐Ÿ I2=โˆซ1โ–’( 7)/โˆš(๐‘ฅ^2 + 4๐‘ฅ + 10) . ๐‘‘๐‘ฅ I2=7โˆซ1โ–’1/โˆš(๐‘ฅ^2 + 2(2)(๐‘ฅ) + 10) . ๐‘‘๐‘ฅ I2=7โˆซ1โ–’1/โˆš(๐‘ฅ^2 + 2(2)(๐‘ฅ) + (2)^2 โˆ’ (2)^2 + 10) . ๐‘‘๐‘ฅ I2=7โˆซ1โ–’1/โˆš((๐‘ฅ + 2)^2 โˆ’ (2)^2 + 10) . ๐‘‘๐‘ฅ I2=7โˆซ1โ–’1/โˆš((๐‘ฅ + 2)^2 โˆ’ 4 + 10) . ๐‘‘๐‘ฅ I2=7โˆซ1โ–’1/โˆš((๐‘ฅ + 2)^2 + 6) . ๐‘‘๐‘ฅ I2=7โˆซ1โ–’1/โˆš((๐‘ฅ + 2)^2 + (โˆš6 )^2 ) . ๐‘‘๐‘ฅ I2=7[๐‘™๐‘œ๐‘”โก|๐‘ฅ+2+โˆš((๐‘ฅ+2)^2 + (โˆš6)^2 )| ]+๐ถ2 I2=7 ๐‘™๐‘œ๐‘”โก|๐‘ฅ+2+โˆš(๐‘ฅ^2+4๐‘ฅ+4+6)|+๐ถ2 I2=7 ๐‘™๐‘œ๐‘”โก|๐‘ฅ+2+โˆš(๐‘ฅ^2+4๐‘ฅ+10)|+๐ถ2 It is of form โˆซ1โ–’๐‘‘๐‘ฅ/โˆš(๐‘ฅ^2 + ๐‘Ž^2 ) =๐‘™๐‘œ๐‘”โก|๐‘ฅ+โˆš(๐‘ฅ^2 + ๐‘Ž^2 )|+๐ถ2 โˆด Replacing x by (๐‘ฅ+2) and a by โˆš6 , we get Putting the values of I1 and I2 in (1) โˆซ1โ–’(5๐‘ฅ + 3)/โˆš(๐‘ฅ^2 + 4๐‘ฅ + 10) . ๐‘‘๐‘ฅ = ๐ผ_1โˆ’๐ผ_2 =5 โˆš(๐‘ฅ^2+4๐‘ฅ+10)+๐ถ1โˆ’7 ๐‘™๐‘œ๐‘”โก|๐‘ฅ+2+โˆš(๐‘ฅ^2+4๐‘ฅ+10)|+๐ถ2 =๐Ÿ“ โˆš(๐’™^๐Ÿ+๐Ÿ’๐’™+๐Ÿ๐ŸŽ)โˆ’๐Ÿ• ๐’๐’๐’ˆโก|๐’™+๐Ÿ+โˆš(๐’™^๐Ÿ+๐Ÿ’๐’™+๐Ÿ๐ŸŽ)|+๐‘ช

  1. Chapter 7 Class 12 Integrals
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo