Ex 7.4, 21 - Chapter 7 Class 12 Integrals
Last updated at Dec. 16, 2024 by Teachoo
Last updated at Dec. 16, 2024 by Teachoo
Ex 7.4, 21 Integrate the function (๐ฅ + 2)/โ(๐ฅ^2 + 2๐ฅ + 3) โซ1โ(๐ฅ + 2)/โ(๐ฅ^2 + 2๐ฅ + 3) ๐๐ฅ =1/2 โซ1โ(2๐ฅ + 4)/โ(๐ฅ^2 + 2๐ฅ + 3) ๐๐ฅ =1/2 โซ1โ(2๐ฅ + 2 + 4 โ 2)/โ(๐ฅ^2 + 2๐ฅ + 3) ๐๐ฅ =1/2 โซ1โ(2๐ฅ + 2)/โ(๐ฅ^2 + 2๐ฅ + 3) ๐๐ฅ+2/2 โซ1โ๐๐ฅ/โ(๐ฅ^2 + 2๐ฅ + 3) ๐๐ฅ =1/2 โซ1โ(2๐ฅ + 2)/โ(๐ฅ^2 + 2๐ฅ + 3) ๐๐ฅ+โซ1โ๐๐ฅ/โ(๐ฅ^2 + 2๐ฅ + 3) ๐๐ฅ Rough (๐ฅ^2+2๐ฅ+3)^โฒ=2๐ฅ+2 Solving ๐ฐ๐ I1=1/2 โซ1โ(2๐ฅ + 2)/โ(๐ฅ^2 + 2๐ฅ + 3) . ๐๐ฅ Let ๐ฅ^2 + 2๐ฅ + 3=๐ก Diff both sides w.r.t.x 2๐ฅ+2+0=๐๐ก/๐๐ฅ ๐๐ฅ=๐๐ก/(2๐ฅ + 2) Now, our equation becomes I1=1/2 โซ1โ(2๐ฅ + 2)/โ(๐ฅ^2 + 2๐ฅ + 3) . ๐๐ฅ Putting the value of (4๐ฅโ๐ฅ^2 ) and ๐๐ฅ I1=1/2 โซ1โ(2๐ฅ + 2)/โ๐ก . ๐๐ฅ I1=1/2 โซ1โ(2๐ฅ + 2)/โ๐ก . ๐๐ก/(2๐ฅ + 2) I1=1/2 โซ1โ1/โ๐ก . ๐๐ก I1=1/2 โซ1โ1/(๐ก)^(1/2) . ๐๐ก I1=1/2 โซ1โ(๐ก)^((โ 1)/2) . ๐๐ก I1=1/2 ใ๐ก ใ^((โ1)/2 + 1)/((โ1)/2 + 1) +๐ถ1 I1= ๐ก ^(1/2 )+๐ถ1 I1= โ๐ก+๐ถ1 I1=โ(๐ฅ^2+2๐ฅ+3)+๐ถ Solving ๐ฐ๐ I2=โซ1โ1/โ(๐ฅ^2 + 2๐ฅ + 3) . ๐๐ฅ I2=โซ1โ1/โ(๐ฅ^2 + 2(๐ฅ)(1) + 3) . ๐๐ฅ I2=โซ1โ1/โ(๐ฅ^2 + 2(๐ฅ)(1) โ (1)^2 + (1)^2 + 3) . ๐๐ฅ (Using ๐ก=๐ฅ^2+2๐ฅ+3) I2=โซ1โ1/โ((๐ฅ + 1)^2 โ (1)^2 + 3) . ๐๐ฅ I2=โซ1โ1/โ((๐ฅ + 1)^2 โ 1 + 3) . ๐๐ฅ I2=โซ1โ1/โ((๐ฅ + 1)^2 + 2) . ๐๐ฅ I2=โซ1โ1/โ((๐ฅ + 1)^2 +(โ2 )^2 ) . ๐๐ฅ I2=๐๐๐โก|๐ฅ+1+โ((๐ฅ + 1)^2+(โ2 )^2 )|+๐ถ2 It is of form โซ1โ๐๐ฅ/โ(๐ฅ^2 + ๐^2 ) =๐๐๐โก|๐ฅ+โ(๐ฅ^2 + ๐^2 )|+๐ถ2 โด Replacing x by (๐ฅ + 1) and a by โ2 , we get I2=๐๐๐โก|๐ฅ+1+โ(๐ฅ^2+2๐ฅ+1+2)|+๐ถ2 I2=๐๐๐โก|๐ฅ+1+โ(๐ฅ^2+2๐ฅ+3)|+๐ถ2 Putting the values of I1 and I2 in (1) โซ1โใ(๐ฅ + 2)/โ(๐ฅ^2 + 2๐ฅ + 3).ใ . ๐๐ฅ = ๐ผ_1+๐ผ_2 =โ(๐ฅ^2+2๐ฅ+3)+๐ถ1+๐๐๐โก|๐ฅ+1+โ(๐ฅ^2+2๐ฅ+3)|+๐ถ2 =โ(๐^๐+๐๐+๐)+๐๐๐โก|๐+๐+โ(๐^๐+๐๐+๐)|+๐ช
Ex 7.4
Ex 7.4, 2 Important
Ex 7.4, 3
Ex 7.4, 4
Ex 7.4, 5 Important
Ex 7.4, 6
Ex 7.4, 7
Ex 7.4, 8 Important
Ex 7.4, 9
Ex 7.4, 10
Ex 7.4, 11 Important
Ex 7.4, 12
Ex 7.4, 13 Important
Ex 7.4, 14
Ex 7.4, 15 Important
Ex 7.4, 16
Ex 7.4, 17 Important
Ex 7.4, 18
Ex 7.4, 19 Important
Ex 7.4, 20
Ex 7.4, 21 Important You are here
Ex 7.4, 22
Ex 7.4, 23 Important
Ex 7.4, 24 (MCQ)
Ex 7.4, 25 (MCQ) Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo