Ex 7.4, 18 - Chapter 7 Class 12 Integrals
Last updated at Dec. 16, 2024 by Teachoo
Last updated at Dec. 16, 2024 by Teachoo
Ex 7.4, 18 5𝑥 − 21 + 2𝑥 + 3 𝑥2 5𝑥 − 21 + 2𝑥 + 3 𝑥2 𝑑𝑥 =5 𝑥 − 251 + 2𝑥 + 3 𝑥2 𝑑𝑥 = 56 6𝑥 − 1251 + 2𝑥 + 3 𝑥2 𝑑𝑥 = 56 6𝑥 + 2 − 125 − 21 + 2𝑥 + 3 𝑥2 𝑑𝑥 = 56 6𝑥 + 2 − 2251 + 2𝑥 + 3 𝑥2 𝑑𝑥 = 56 6𝑥 + 21 + 2𝑥 + 3 𝑥2 𝑑𝑥− 56× 225 𝑑𝑥1 + 2𝑥 + 3 𝑥2 = 56 6𝑥 + 21 + 2𝑥 + 3 𝑥2 𝑑𝑥− 113 𝑑𝑥1 + 2𝑥 + 3 𝑥2 Solving 𝑰𝟏 I1 = 56 2 + 6𝑥3 𝑥2+ 2𝑥 + 1 𝑑𝑥 Let 3 𝑥2+2𝑥+1=𝑡 Diff both sides w.r.t.x 6𝑥+2+0= 𝑑𝑡𝑑𝑥 𝑑𝑥= 𝑑𝑡6𝑥 + 2 Thus, our equation becomes I1= 56 2 + 6𝑥3 𝑥2+ 2𝑥 + 1 𝑑𝑥 Put the values of 3 𝑥2+2𝑥+1 and 𝑑𝑥, we get I1= 56 6𝑥 + 2𝑡 𝑑𝑥 I1= 56 6𝑥 + 2𝑡 × 𝑑𝑡6𝑥 + 2 I1= 56 1𝑡 . 𝑑𝑡 I1= 56 log 𝑡+𝐶1 I1= 56 log 3 𝑥2+2𝑥+1+𝐶1 Solving 𝑰𝟐 I2= 113 13 𝑥2+ 2𝑥 + 1 . 𝑑𝑥 = 113 13 𝑥2+ 2𝑥3 + 13 . 𝑑𝑥 = 113 . 3 1 𝑥2+ 2𝑥3 + 13 . 𝑑𝑥 = 119 1 𝑥2+ 2 𝑥 13 + 13 . 𝑑𝑥 = 119 1 𝑥2+ 2 𝑥 13 + 132− 132+ 13 . 𝑑𝑥 = 119 1 𝑥 + 132− 132+ 13 . 𝑑𝑥 = 119 1 𝑥 + 132− 19 + 13 . 𝑑𝑥 = 119 1 𝑥 + 132 + 29 . 𝑑𝑥 = 119 1 𝑥 + 132 + 23 2 . 𝑑𝑥 = 119 1 23 𝑡𝑎𝑛−1 𝑥 + 13 23+𝐶2 = 119 3 2 𝑡𝑎𝑛−1 3𝑥 +13 23+𝐶2 = 119 3 2 𝑡𝑎𝑛−1 3𝑥 + 1 2 = 119 . 3 2 𝑡𝑎𝑛−1 3𝑥 + 1 2 + 119 𝐶2 = 113 2 𝑡𝑎𝑛−1 3𝑥 + 1 2 + 𝐶3 Now, putting the values of I1 and I2 in (1) 5𝑥 − 21 + 2𝑥 + 3 𝑥2 . 𝑑𝑥 = 56 2 + 6𝑥1 + 2𝑥 + 3 𝑥2 . 𝑑𝑥− 113 11 + 2𝑥 + 3 𝑥2 . 𝑑𝑥 = 𝟓𝟔 𝒍𝒐𝒈 𝟑 𝒙𝟐+𝟐𝒙+𝟏− 𝟏𝟏𝟑 𝟐 𝒕𝒂𝒏−𝟏 𝟑𝒙 + 𝟏 𝟐 + 𝑪
Ex 7.4
Ex 7.4, 2 Important
Ex 7.4, 3
Ex 7.4, 4
Ex 7.4, 5 Important
Ex 7.4, 6
Ex 7.4, 7
Ex 7.4, 8 Important
Ex 7.4, 9
Ex 7.4, 10
Ex 7.4, 11 Important
Ex 7.4, 12
Ex 7.4, 13 Important
Ex 7.4, 14
Ex 7.4, 15 Important
Ex 7.4, 16
Ex 7.4, 17 Important
Ex 7.4, 18 You are here
Ex 7.4, 19 Important
Ex 7.4, 20
Ex 7.4, 21 Important
Ex 7.4, 22
Ex 7.4, 23 Important
Ex 7.4, 24 (MCQ)
Ex 7.4, 25 (MCQ) Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo