Check sibling questions


Transcript

Ex 7.4, 17 Integrate the function (๐‘ฅ + 2)/โˆš(๐‘ฅ^2 โˆ’ 1) โˆซ1โ–’(๐‘ฅ + 2)/โˆš(๐‘ฅ^2 โˆ’ 1) . ๐‘‘๐‘ฅ=โˆซ1โ–’(1/2 (2๐‘ฅ) + 2" " )/โˆš(๐‘ฅ^2 โˆ’ 1) . ๐‘‘๐‘ฅ =โˆซ1โ–’(1/2 (2๐‘ฅ))/โˆš(๐‘ฅ^2 โˆ’ 1) . ๐‘‘๐‘ฅ+โˆซ1โ–’2/โˆš(๐‘ฅ^2 โˆ’ 1) . ๐‘‘๐‘ฅ =1/2 โˆซ1โ–’( 2๐‘ฅ)/โˆš(๐‘ฅ^2 โˆ’ 1) . ๐‘‘๐‘ฅ+โˆซ1โ–’2/โˆš(๐‘ฅ^2 โˆ’ 1) . ๐‘‘๐‘ฅ Solving ๐‘ฐ๐Ÿ I1=1/2 โˆซ1โ–’( 2๐‘ฅ)/โˆš(๐‘ฅ^2 โˆ’ 1) ๐‘‘๐‘ฅ โ€ฆ(1) Let ๐‘ฅ^2โˆ’1=๐‘ก Differentiating w.r.t. x 2๐‘ฅโˆ’0=๐‘‘๐‘ก/๐‘‘๐‘ฅ ๐‘‘๐‘ฅ=๐‘‘๐‘ก/2๐‘ฅ Thus, our equation becomes I1=1/2 โˆซ1โ–’( 2๐‘ฅ)/โˆš(๐‘ฅ^2 โˆ’ 1) ๐‘‘๐‘ฅ Put the values of (๐‘ฅ^2โˆ’1)=๐‘ก and ๐‘‘๐‘ฅ, we get I1=1/2 โˆซ1โ–’( 2๐‘ฅ)/โˆš๐‘ก ๐‘‘๐‘ฅ I1=1/2 โˆซ1โ–’( 2๐‘ฅ)/โˆš๐‘ก ร— ๐‘‘๐‘ก/2๐‘ฅ I1=1/2 โˆซ1โ–’( 1)/โˆš๐‘ก ๐‘‘๐‘ก I1=1/2 โˆซ1โ–’1/๐‘ก^(1/2) ๐‘‘๐‘ก I1=1/2 โˆซ1โ–’๐‘ก^((โˆ’1)/2) ๐‘‘๐‘ก I1=1/2 ๐‘ก^((โˆ’1)/2 + 1)/((โˆ’1)/2 + 1) +๐ถ1 I1=1/2 ๐‘ก^(1/2)/(1/2) +๐ถ1 I1=๐‘ก^(1/2)+๐ถ1 I1=โˆš๐‘ก+๐ถ1 I1=โˆš(๐‘ฅ^2 โˆ’ 1) + ๐ถ1 Solving ๐‘ฐ๐Ÿ I2=โˆซ1โ–’2/โˆš(๐‘ฅ^2 โˆ’ 1) . ๐‘‘๐‘ฅ I2=2โˆซ1โ–’1/โˆš(๐‘ฅ^2 โˆ’ (1)^2 ) . ๐‘‘๐‘ฅ I2=2 ๐‘™๐‘œ๐‘”โก|๐‘ฅ+โˆš(๐‘ฅ^2 โˆ’1)|+๐ถ2 It is of form โˆซ1โ–’๐‘‘๐‘ฅ/โˆš(๐‘ฅ^2 โˆ’ ๐‘Ž^2 ) =๐‘™๐‘œ๐‘”โก|๐‘ฅ+โˆš(๐‘ฅ^2 โˆ’ ๐‘Ž^2 )|+๐ถ โˆด Replacing a by 1 , we get ("Using " ๐‘ก=๐‘ฅ^2โˆ’1) Now, Putting the values of I1 and I2 in (1) โˆซ1โ–’(๐‘ฅ + 2)/โˆš(๐‘ฅ^2 โˆ’ 1) . ๐‘‘๐‘ฅ=1/2 โˆซ1โ–’( 2๐‘ฅ)/โˆš(๐‘ฅ^2 โˆ’ 1) . ๐‘‘๐‘ฅ+2โˆซ1โ–’1/โˆš(๐‘ฅ^2 โˆ’ 1) . ๐‘‘๐‘ฅ =โˆš(๐‘ฅ^2 โˆ’ 1) + ๐ถ1+2 ๐‘™๐‘œ๐‘”โก|๐‘ฅ+โˆš(๐‘ฅ^2 โˆ’1) |+๐ถ2 =โˆš(๐’™^๐Ÿ โˆ’ ๐Ÿ)+๐Ÿ ๐’๐’๐’ˆโก|๐’™+โˆš(๐’™^๐Ÿ โˆ’๐Ÿ)|+ ๐‘ช

  1. Chapter 7 Class 12 Integrals
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo