Last updated at Dec. 16, 2024 by Teachoo
Ex 5.1, 28 Find the values of k so that the function f is continuous at the indicated point π(π₯)={β(ππ₯+1 , ππ π₯β€π@cosβ‘γπ₯, γ ππ π₯>π)β€ at x = π Given that function is continuous at π₯ =π π is continuous at π₯ =π If L.H.L = R.H.L = π(π) i.e. limβ¬(xβπ^β ) π(π₯)=limβ¬(xβπ^+ ) " " π(π₯)= π(π) LHL at x β Ο (πππ)β¬(π₯βπ^β ) f(x) = (πππ)β¬(ββ0) f(Ο β h) = limβ¬(hβ0) k (Ο β h) + 1 = k(Ο β 0) + 1 = kΟ + 1 RHL at x β Ο (πππ)β¬(π₯βπ^+ ) f(x) = (πππ)β¬(ββ0) f(Ο + h) = limβ¬(hβ0) cos (Ο + h) = cos (Ο + 0) = cos (Ο) = β1 Since L.H.L = R.H.L ππ+1=β1 ππ=β2 π= (βπ)/π
Ex 5.1
Ex 5.1 ,2
Ex 5.1, 3 (a)
Ex 5.1, 3 (b)
Ex 5.1, 3 (c) Important
Ex 5.1, 3 (d) Important
Ex 5.1 ,4
Ex 5.1 ,5 Important
Ex 5.1 ,6
Ex 5.1 ,7 Important
Ex 5.1 ,8
Ex 5.1, 9 Important
Ex 5.1, 10
Ex 5.1, 11
Ex 5.1, 12 Important
Ex 5.1, 13
Ex 5.1, 14
Ex 5.1, 15 Important
Ex 5.1, 16
Ex 5.1, 17 Important
Ex 5.1, 18 Important
Ex 5.1, 19 Important
Ex 5.1, 20
Ex 5.1, 21
Ex 5.1, 22 (i) Important
Ex 5.1, 22 (ii)
Ex 5.1, 22 (iii)
Ex 5.1, 22 (iv) Important
Ex 5.1, 23
Ex 5.1, 24 Important
Ex 5.1, 25
Ex 5.1, 26 Important
Ex 5.1, 27
Ex 5.1, 28 Important You are here
Ex 5.1, 29
Ex 5.1, 30 Important
Ex 5.1, 31
Ex 5.1, 32
Ex 5.1, 33
Ex 5.1, 34 Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo