Last updated at Dec. 16, 2024 by Teachoo
Ex 5.1, 26 Find the values of k so that the function f is continuous at the indicated point 𝑓(𝑥)={█((𝑘 cos𝑥)/(𝜋 − 2𝑥 ) , 𝑖𝑓 𝑥≠𝜋/2@& 3, 𝑖𝑓 𝑥=𝜋/2)┤ at 𝑥 = 𝜋/2 Given that function is continuous at 𝑥 =𝜋/2 𝑓 is continuous at =𝜋/2 if L.H.L = R.H.L = 𝑓(𝜋/2) i.e. lim┬(x→〖𝜋/2〗^− ) 𝑓(𝑥)=lim┬(x→〖𝜋/2〗^+ ) " " 𝑓(𝑥)= 𝑓(𝜋/2) LHL at x → 𝝅/𝟐 (𝑙𝑖𝑚)┬(𝑥→〖𝜋/2〗^− ) 𝑓(𝑥) = (𝑙𝑖𝑚)┬(ℎ→0) 𝑓(𝜋/2−ℎ) = lim┬(h→0) (𝑘 cos(𝜋/2 − ℎ))/(𝜋 − 2(𝜋/2 − ℎ) ) = lim┬(h→0) (𝑘 sinℎ)/(𝜋 − 𝜋 + 2ℎ ) = lim┬(h→0) (𝑘 sinℎ)/(2ℎ ) = k/2 (𝒍𝒊𝒎)┬(𝐡→𝟎) 𝐬𝐢𝐧𝒉/(𝒉 ) = 𝑘/2 × 1 = 𝒌/𝟐 RHL at x → 𝝅/𝟐 (𝑙𝑖𝑚)┬(𝑥→〖𝜋/2〗^+ ) 𝑓(𝑥) = (𝑙𝑖𝑚)┬(ℎ→0) 𝑓(𝜋/2+ℎ) = lim┬(h→0) (𝑘 cos(𝜋/2 + ℎ))/(𝜋 − 2(𝜋/2 + ℎ) ) = lim┬(h→0) (𝑘 〖(−sin〗ℎ))/(𝜋 − 𝜋 − 2ℎ ) = lim┬(h→0) (−𝑘 sinℎ)/(−2ℎ ) = k/2 (𝒍𝒊𝒎)┬(𝐡→𝟎) 𝒔𝒊𝒏𝒉/(𝒉 ) = 𝑘/2 × 1 = 𝑘/2 And 𝑓(𝜋/2) = 3 Now, L.H.L = R.H.L = 𝑓(𝜋/2) 𝑘/2 = 𝑘/2 = 3 Hence, 𝑘/2 = 3 k = 3 × 2 k = 6 Hence, k = 6
Ex 5.1
Ex 5.1 ,2
Ex 5.1, 3 (a)
Ex 5.1, 3 (b)
Ex 5.1, 3 (c) Important
Ex 5.1, 3 (d) Important
Ex 5.1 ,4
Ex 5.1 ,5 Important
Ex 5.1 ,6
Ex 5.1 ,7 Important
Ex 5.1 ,8
Ex 5.1, 9 Important
Ex 5.1, 10
Ex 5.1, 11
Ex 5.1, 12 Important
Ex 5.1, 13
Ex 5.1, 14
Ex 5.1, 15 Important
Ex 5.1, 16
Ex 5.1, 17 Important
Ex 5.1, 18 Important
Ex 5.1, 19 Important
Ex 5.1, 20
Ex 5.1, 21
Ex 5.1, 22 (i) Important
Ex 5.1, 22 (ii)
Ex 5.1, 22 (iii)
Ex 5.1, 22 (iv) Important
Ex 5.1, 23
Ex 5.1, 24 Important
Ex 5.1, 25
Ex 5.1, 26 Important You are here
Ex 5.1, 27
Ex 5.1, 28 Important
Ex 5.1, 29
Ex 5.1, 30 Important
Ex 5.1, 31
Ex 5.1, 32
Ex 5.1, 33
Ex 5.1, 34 Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo