Last updated at Dec. 16, 2024 by Teachoo
Ex 5.1, 22 (i) Discuss the continuity of the cosine, cosecant, secant and cotangent functions.Let π(π)=ππ¨π¬β‘π To check continuity of π(π₯), We check itβs if it is continuous at any point x = c Let c be any real number f is continuous at π₯ =π if if L.H.L = R.H.L = π(π) i.e. limβ¬(xβπ^β ) π(π₯)= limβ¬(xβπ^+ ) " " π(π₯)= π(π) LHL at x β c limβ¬(xβπ^β ) f(x) = limβ¬(hβ0) f(c β h) = limβ¬(hβ0) cosβ‘(πββ) = limβ¬(hβ0) sinβ‘π sinβ‘β+cosβ‘π cosβ‘β Putting β=0 = sinβ‘π sinβ‘0+cosβ‘π cosβ‘0 = 0+cos c . 1 = πππβ‘π π΄π , cosβ‘(π₯βπ¦) =cosβ‘π₯ cosβ‘π¦βsinβ‘π₯ sinβ‘π¦ RHL at x β c limβ¬(xβπ^+ ) f(x) = limβ¬(hβ0) f(c + h) = limβ¬(hβ0) cosβ‘(π+β) = limβ¬(hβ0) cosβ‘π cosβ‘β β sinβ‘π sinβ‘β Putting β=0 = cosβ‘π cosβ‘0 β sinβ‘π sinβ‘0 = cos c . 1 β 0 = πππβ‘π π΄π , cosβ‘(π₯+π¦) =cosβ‘π₯ cosβ‘π¦βsinβ‘π₯ sinβ‘π¦ And, π(π) = cosβ‘π Since, L.H.L = R.H.L = π(π) β΄ Function is continuous at x = c Thus, we can write that f is continuous for x = c , where c βπ β΄ πππβ‘π is continuous for every real number.
Ex 5.1
Ex 5.1 ,2
Ex 5.1, 3 (a)
Ex 5.1, 3 (b)
Ex 5.1, 3 (c) Important
Ex 5.1, 3 (d) Important
Ex 5.1 ,4
Ex 5.1 ,5 Important
Ex 5.1 ,6
Ex 5.1 ,7 Important
Ex 5.1 ,8
Ex 5.1, 9 Important
Ex 5.1, 10
Ex 5.1, 11
Ex 5.1, 12 Important
Ex 5.1, 13
Ex 5.1, 14
Ex 5.1, 15 Important
Ex 5.1, 16
Ex 5.1, 17 Important
Ex 5.1, 18 Important
Ex 5.1, 19 Important
Ex 5.1, 20
Ex 5.1, 21
Ex 5.1, 22 (i) Important You are here
Ex 5.1, 22 (ii)
Ex 5.1, 22 (iii)
Ex 5.1, 22 (iv) Important
Ex 5.1, 23
Ex 5.1, 24 Important
Ex 5.1, 25
Ex 5.1, 26 Important
Ex 5.1, 27
Ex 5.1, 28 Important
Ex 5.1, 29
Ex 5.1, 30 Important
Ex 5.1, 31
Ex 5.1, 32
Ex 5.1, 33
Ex 5.1, 34 Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo