web analytics

Example 30 - With reference to right handed system of mutually - Scalar product - Defination

Slide80.JPG
Slide81.JPG

  1. Chapter 10 Class 12 Vector Algebra
  2. Serial order wise
Ask Download

Transcript

Example 30 If with reference to the right handed system of mutually perpendicular unit vectors 𝑖﷯, 𝑗﷯ and 𝑘﷯, α﷯ = 3 𝑖﷯ − 𝑗﷯, β﷯ = 2 𝑖﷯ + 𝑗﷯ – 3 𝑘﷯, then express β﷯ in the form β﷯ = β﷯1 + β﷯2, where β﷯1 is parallel to α﷯ and β﷯2 is perpendicular to α﷯. 𝛼﷯ = 3 𝑖﷯ − 𝑗﷯ = 3 𝑖﷯ − 𝑗﷯ + 0 𝑘﷯ β﷯ = 2 𝑖﷯ + 𝑗﷯ − 3 𝑘﷯ = 2 𝑖﷯ + 1 𝑗﷯ − 3 𝑘﷯ To show: β﷯ = β﷯1 + β﷯2 Given, β﷯1 is parallel to 𝛼﷯ & β﷯2 is perpendicular to 𝛼﷯ Let β﷯1 = 𝝀 𝜶﷯ , 𝜆 being a scalar. β﷯1 = 𝜆 (3 𝑖﷯ − 1 𝑗﷯ + 0 𝑘﷯) = 3𝜆 𝑖﷯ − 𝜆 𝑗﷯ + 0 𝑘﷯ Now, β﷯2 = β﷯ − β﷯1 = 2 𝑖﷯ + 1 𝑗﷯ − 3 𝑘﷯﷯ − 3𝜆 𝑖﷯ − 𝜆 𝑗﷯ + 0 𝑘﷯﷯ = 2 𝑖﷯ + 1 𝑗﷯ − 3 𝑘﷯ − 3𝜆 𝑖﷯ + 𝜆 𝑗﷯ + 0 𝑘﷯ = (2 − 3𝜆) 𝑖﷯ + (1 + 𝜆) 𝑗﷯ − 3 𝑘﷯ Also, since β﷯2 is perpendicular to 𝛼﷯ So, β﷯2 . 𝜶﷯ = 0 (2 − 3𝜆) 𝑖﷯ + (1 + 𝜆) 𝑗﷯ − 3 𝑘﷯﷯. (3 𝑖﷯ − 1 𝑗﷯ + 0 𝑘﷯) = 0 (2 − 3𝜆) × 3 + (1 + 𝜆) × −1 + (−3) × 0 = 0 6 − 9𝜆 − 1 − 𝜆 = 0 5 − 10𝜆 = 0 10𝜆 = 5 𝜆 = 5﷮10﷯ 𝜆 = 𝟏﷮𝟐﷯ Putting value of 𝜆 in β﷯1 and β﷯2 , β﷯1 = 3𝜆 𝑖﷯ − 𝜆 𝑗﷯ + 0 𝑘﷯ = 3. 1﷮2﷯ 𝑖﷯ − 1﷮2﷯ 𝑗﷯ + 0 𝑘﷯ = 𝟑﷮𝟐﷯ 𝒊﷯ − 𝟏﷮𝟐﷯ 𝒋﷯ β﷯2 = (2 − 3𝜆) 𝑖﷯ + (1 + 𝜆) 𝑗﷯ − 3 𝑘﷯ = 2 − 3. 1﷮2﷯﷯ 𝑖﷯ + 1+ 1﷮2﷯﷯ 𝑗﷯ − 3 𝑘﷯ = 𝟏﷮𝟐﷯ 𝒊﷯ + 𝟑﷮𝟐﷯ 𝒋﷯− 3 𝒌﷯

About the Author

CA Maninder Singh's photo - Expert in Practical Accounts, Taxation and Efiling
CA Maninder Singh
CA Maninder Singh is a Chartered Accountant for the past 8 years. He provides courses for Practical Accounts, Taxation and Efiling at teachoo.com .
Jail