Example 12 - Show that points A(2i - j + k), B(i - 3j + 5k), C (3i-4j-

Advertisement

Example 12 - Chapter 10 Class 12 Vector Algebra - Part 2

Advertisement

Example 12 - Chapter 10 Class 12 Vector Algebra - Part 3

Example 12 - Chapter 10 Class 12 Vector Algebra - Part 4 Example 12 - Chapter 10 Class 12 Vector Algebra - Part 5 Example 12 - Chapter 10 Class 12 Vector Algebra - Part 6 Example 12 - Chapter 10 Class 12 Vector Algebra - Part 7

  1. Chapter 10 Class 12 Vector Algebra (Term 2)
  2. Serial order wise

Transcript

Example 12 (Method 1) Show that the points A(2𝑖 Μ‚ βˆ’ 𝑗 Μ‚ + π‘˜ Μ‚), B(𝑖 Μ‚ βˆ’ 3𝑗 Μ‚ βˆ’ 5π‘˜ Μ‚) , C(3𝑖 Μ‚ βˆ’ 4𝑗 Μ‚ βˆ’ 4π‘˜ Μ‚) are the vertices of a right angled triangle. Given A (2𝑖 Μ‚ βˆ’ 𝑗 Μ‚ + π‘˜ Μ‚), B (𝑖 Μ‚ βˆ’ 3𝑗 Μ‚ βˆ’ 5π‘˜ Μ‚) C (3𝑖 Μ‚ βˆ’ 4𝑗 Μ‚ βˆ’ 4π‘˜ Μ‚) We know that two vectors are perpendicular to each other, if their scalar product is zero. Finding (𝑨𝑩) βƒ— , (𝑩π‘ͺ) βƒ— , (𝑨π‘ͺ) βƒ— (𝑨𝑩) βƒ— = (𝑖 Μ‚ βˆ’ 3𝑗 Μ‚ βˆ’ 5π‘˜ Μ‚) βˆ’ (2𝑖 Μ‚ βˆ’ 𝑗 Μ‚ + π‘˜ Μ‚) = (1 βˆ’ 2) 𝑖 Μ‚ + (βˆ’3 + 1) 𝑗 Μ‚ + (βˆ’5 βˆ’ 1) π‘˜ Μ‚ = βˆ’1π’Š Μ‚ βˆ’ 2𝒋 Μ‚ βˆ’ 6π’Œ Μ‚ (𝑩π‘ͺ) βƒ— = (3𝑖 Μ‚ βˆ’ 4𝑗 Μ‚ βˆ’ 4π‘˜ Μ‚) βˆ’ (𝑖 Μ‚ βˆ’ 3𝑗 Μ‚ βˆ’ 5π‘˜ Μ‚) = (3 βˆ’ 1) 𝑖 Μ‚ + (βˆ’4 + 3) 𝑗 Μ‚ + (βˆ’4 + 5) π‘˜ Μ‚ = 2π’Š Μ‚ βˆ’ 1𝒋 Μ‚ + 1π’Œ Μ‚ (π‘ͺ𝑨) βƒ— = (2𝑖 Μ‚ βˆ’ 𝑗 Μ‚ + π‘˜ Μ‚) βˆ’ (3𝑖 Μ‚ βˆ’ 4𝑗 Μ‚ βˆ’ 4π‘˜ Μ‚) = (2 βˆ’ 3) 𝑖 Μ‚ + (βˆ’1 + 4) 𝑗 Μ‚ + (1 + 4) π‘˜ Μ‚ = βˆ’1π’Š Μ‚ + 3𝒋 Μ‚ + 5π’Œ Μ‚ Finding (𝑩π‘ͺ) βƒ—. (π‘ͺ𝑨) βƒ— (𝑩π‘ͺ) βƒ—. (π‘ͺ𝑨) βƒ— = (2𝑖 Μ‚ βˆ’ 1𝑗 Μ‚ + 1π‘˜ Μ‚) . (-1𝑖 Μ‚ + 3𝑗 Μ‚ + 5π‘˜ Μ‚) = (2 Γ— –1) + (βˆ’1 Γ— 3) + (1 Γ— 5) = (βˆ’2) + (βˆ’3) + 5 = βˆ’5 + 5 = 0 Since, (𝑩π‘ͺ) βƒ—. (π‘ͺ𝑨) βƒ— = 0 Therefore, (𝐡𝐢) βƒ— is perpendicular to (𝐢𝐴) βƒ— . Hence, Ξ” ABC is a right angled triangle Example 12 (Method 2) Show that the points A(2𝑖 Μ‚ βˆ’ 𝑗 Μ‚ + π‘˜ Μ‚), B(𝑖 Μ‚ βˆ’ 3𝑗 Μ‚ βˆ’ 5π‘˜ Μ‚) , C(3𝑖 Μ‚ βˆ’ 4𝑗 Μ‚ βˆ’ 4π‘˜ Μ‚) are the vertices of a right angled triangle. Given A (2𝑖 Μ‚ βˆ’ 𝑗 Μ‚ + π‘˜ Μ‚), B (𝑖 Μ‚ βˆ’ 3𝑗 Μ‚ βˆ’ 5π‘˜ Μ‚) C (3𝑖 Μ‚ βˆ’ 4𝑗 Μ‚ βˆ’ 4π‘˜ Μ‚) Considering βˆ†ABC as a right angled triangle, By Pythagoras theorem, AB2 = BC2 + CA2 or |("AB" ) βƒ— |"2" = |("BC" ) βƒ— |"2" + |("CA" ) βƒ— |"2" Finding (𝑨𝑩) βƒ— , (𝑩π‘ͺ) βƒ— , (𝑨π‘ͺ) βƒ— (𝑨𝑩) βƒ— = (𝑖 Μ‚ βˆ’ 3𝑗 Μ‚ βˆ’ 5π‘˜ Μ‚) βˆ’ (2𝑖 Μ‚ βˆ’ 𝑗 Μ‚ + π‘˜ Μ‚) = (1 βˆ’ 2) 𝑖 Μ‚ + (βˆ’3 + 1) 𝑗 Μ‚ + (βˆ’5 βˆ’1) π‘˜ Μ‚ = βˆ’1π’Š Μ‚ βˆ’ 2𝒋 Μ‚ βˆ’ 6π’Œ Μ‚ (𝑩π‘ͺ) βƒ— = (3𝑖 Μ‚ βˆ’ 4𝑗 Μ‚ βˆ’ 4π‘˜ Μ‚) βˆ’ (𝑖 Μ‚ βˆ’ 3𝑗 Μ‚ βˆ’ 5π‘˜ Μ‚) = (3 βˆ’ 1) 𝑖 Μ‚ + (βˆ’4 + 3) 𝑗 Μ‚ + (βˆ’4 + 5) π‘˜ Μ‚ = 2π’Š Μ‚ βˆ’ 1𝒋 Μ‚ + 1π’Œ Μ‚ (π‘ͺ𝑨) βƒ— = (2𝑖 Μ‚ βˆ’ 𝑗 Μ‚ + π‘˜ Μ‚) βˆ’ (3𝑖 Μ‚ βˆ’ 4𝑗 Μ‚ βˆ’ 4π‘˜ Μ‚) = (2 βˆ’ 3) 𝑖 Μ‚ + (βˆ’1 + 4) 𝑗 Μ‚ + (1 + 4) π‘˜ Μ‚ = βˆ’1π’Š Μ‚ + 3𝒋 Μ‚ + 5π’Œ Μ‚ Now, "Magnitude of " (𝑨𝑩) βƒ—" = " √((βˆ’1)2+(βˆ’2)2+(βˆ’6)2) " " |(𝐴𝐡) βƒ— |" = " √(1+4+36) " = " βˆšπŸ’πŸ Magnitude of (𝑩π‘ͺ) βƒ— = √(22+(βˆ’1)2+1) |(𝐡𝐢) βƒ— | = √(4+1+1) = βˆšπŸ” Magnitude of (π‘ͺ𝑨) βƒ— = √((βˆ’1)2+32+52) |(𝐢𝐴) βƒ— | = √(1+9+25) = βˆšπŸ‘πŸ“ Now, |(𝑩π‘ͺ) βƒ— |^𝟐 + |(π‘ͺ𝑨) βƒ— |^𝟐 = (√6)2 + (√35)2 = 6 + 35 = 41 = (√41)2 = |(𝑨𝑩) βƒ— |^𝟐 Thus, |(𝑨𝑩) βƒ— |^𝟐 = |(𝑩π‘ͺ) βƒ— |^𝟐 + |(π‘ͺ𝑨) βƒ— |^𝟐 Hence, by Pythagoras Theorem, Ξ” ABC is a right angled triangle.

About the Author

Davneet Singh's photo - Teacher, Engineer, Marketer
Davneet Singh
Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 10 years. He provides courses for Maths and Science at Teachoo.