Slide76.jpeg

Slide77.jpeg
Slide78.jpeg

  Slide79.jpeg

Slide80.jpeg Slide81.jpeg Slide82.jpeg


Transcript

Example 29 (Method 1) Three vectors 𝑎 ⃗, 𝑏 ⃗ and 𝑐 ⃗ satisfy the condition 𝑎 ⃗ + 𝑏 ⃗ + 𝑐 ⃗ = 0 ⃗ . Evaluate the quantity μ = 𝑎 ⃗ ⋅𝑏 ⃗ + 𝑏 ⃗ ⋅ 𝑐 ⃗ + 𝑐 ⃗ ⋅ 𝑎 ⃗, if |𝑎 ⃗|=1, |𝑏 ⃗|= 4 and |c ⃗|= 2.Given |𝑎 ⃗|=1, |𝑏 ⃗|= 4 and |c ⃗|= 2 Also, 𝑎 ⃗ + 𝑏 ⃗ + 𝑐 ⃗ = 0 ⃗ So, |𝒂 ⃗" + " 𝒃 ⃗" + " 𝒄 ⃗ | = |𝟎 ⃗ | = 0 Now, |𝒂 ⃗+𝒃 ⃗+𝒄 ⃗ |2 = (𝒂 ⃗ + 𝒃 ⃗ + 𝒄 ⃗) . (𝒂 ⃗ + 𝒃 ⃗ + 𝒄 ⃗) = 𝑎 ⃗. 𝑎 ⃗ + 𝑎 ⃗ . 𝑏 ⃗ + 𝑎 ⃗ . 𝑐 ⃗ + 𝑏 ⃗ . 𝑎 ⃗ + 𝑏 ⃗ . 𝑏 ⃗ + 𝑏 ⃗ . 𝑐 ⃗ + 𝑐 ⃗ . 𝑎 ⃗ + 𝑐 ⃗ . 𝑏 ⃗ + 𝑐 ⃗ . 𝑐 ⃗ = 𝑎 ⃗. 𝑎 ⃗ + 𝑎 ⃗ . 𝑏 ⃗ + 𝒄 ⃗ . 𝒂 ⃗ + 𝒂 ⃗ . 𝒃 ⃗ + 𝑏 ⃗ . 𝑏 ⃗ + 𝑏 ⃗ . 𝑐 ⃗ + 𝑎 ⃗ . 𝑐 ⃗ + 𝒃 ⃗ . 𝒄 ⃗ + 𝑐 ⃗ . 𝑐 ⃗ = 𝑎 ⃗ . 𝑎 ⃗ + 𝑏 ⃗ . 𝑏 ⃗ + 𝑐 ⃗ . 𝑐 ⃗ + 2𝑎 ⃗. 𝑏 ⃗ + 2𝑏 ⃗. 𝑐 ⃗ + 2𝑐 ⃗. 𝑎 ⃗ = 𝒂 ⃗ . 𝒂 ⃗ + 𝒃 ⃗ . 𝒃 ⃗ + 𝒄 ⃗ . 𝒄 ⃗ + 2(𝑎 ⃗. 𝑏 ⃗ + 𝑏 ⃗. 𝑐 ⃗ + 𝑐 ⃗. 𝑎 ⃗) = |𝒂 ⃗ |𝟐 + |𝒃 ⃗ |𝟐 + |𝒄 ⃗ |𝟐 + 2 (𝑎 ⃗. 𝑏 ⃗ + 𝑏 ⃗. 𝑐 ⃗ + 𝑐 ⃗ . 𝑎 ⃗) = 12 + 42 + 22 + 2(𝑎 ⃗. 𝑏 ⃗ + 𝑏 ⃗. 𝑐 ⃗ + 𝑐 ⃗. 𝑎 ⃗) = 1 + 16 + 4 + 2(𝑎 ⃗. 𝑏 ⃗ + 𝑏 ⃗. 𝑐 ⃗ + 𝑐 ⃗. 𝑎 ⃗) = 21 + 2 (𝒂 ⃗. 𝒃 ⃗ + 𝒃 ⃗. 𝒄 ⃗ + 𝒄 ⃗. 𝒂 ⃗) So, |𝑎 ⃗+𝑏 ⃗+𝑐 ⃗ |2 = 21 + 2 (𝑎 ⃗. 𝑏 ⃗ + 𝑏 ⃗. 𝑐 ⃗ + 𝑐 ⃗. 𝑎 ⃗) Now, given that |𝒂 ⃗" + " 𝒃 ⃗" + " 𝒄 ⃗ | = 0 |𝑎 ⃗" + " 𝑏 ⃗" + " 𝑐 ⃗ |2 = 0 21 + 2 (𝒂 ⃗. 𝒃 ⃗ + 𝒃 ⃗. 𝒄 ⃗ + 𝒄 ⃗. 𝒂 ⃗) = 0 2(𝑎 ⃗. 𝑏 ⃗ + 𝑏 ⃗. 𝑐 ⃗ + 𝑐 ⃗. 𝑎 ⃗) = −21 (𝑎 ⃗. 𝑏 ⃗ + 𝑏 ⃗. 𝑐 ⃗ + 𝑐 ⃗. 𝑎 ⃗) = (−21)/2 Therefore, 𝝁 = 𝒂 ⃗. 𝒃 ⃗ + 𝒃 ⃗. 𝒄 ⃗ + 𝒄 ⃗ . 𝒂 ⃗ = (−𝟐𝟏)/𝟐 Example 29 (Method 2) Three vectors 𝑎 ⃗, 𝑏 ⃗ and 𝑐 ⃗ satisfy the condition 𝑎 ⃗ + 𝑏 ⃗ + 𝑐 ⃗ = 0 ⃗ . Evaluate the quantity μ = 𝑎 ⃗ ⋅𝑏 ⃗ + 𝑏 ⃗ ⋅ 𝑐 ⃗ + 𝑐 ⃗ ⋅ 𝑎 ⃗, if |𝑎 ⃗|=1, |𝑏 ⃗|= 4 and |c ⃗|= 2.Given |𝑎 ⃗| = 1, |𝑏 ⃗|= 4 and |c ⃗|= 2 Also, ( 𝑎 ⃗ + 𝑏 ⃗ + 𝑐 ⃗ ) = 0 ⃗ Now, 𝒂 ⃗ . (𝒂 ⃗ + 𝒃 ⃗ + 𝒄 ⃗) = 𝑎 ⃗ . 𝑎 ⃗ + 𝑎 ⃗. 𝑏 ⃗ + 𝑎 ⃗ . 𝑐 ⃗ 𝑎 ⃗ . 0 ⃗ = 𝑎 ⃗. 𝑎 ⃗ + 𝑎 ⃗. 𝑏 ⃗ + 𝑎 ⃗. 𝑐 ⃗ 0 = 𝒂 ⃗. 𝒂 ⃗ + 𝑎 ⃗. 𝑏 ⃗ + 𝑎 ⃗. 𝑐 ⃗ 0 ⃗ = |𝒂 ⃗ |𝟐 + 𝑎 ⃗. 𝑏 ⃗ + 𝒂 ⃗. 𝒄 ⃗ (Using prop : 𝑎 ⃗ . 𝑎 ⃗ = |𝑎 ⃗ |2 ) 0 ⃗ = |𝑎 ⃗ |2 + 𝑎 ⃗. 𝑏 ⃗ + 𝒄 ⃗. 𝒂 ⃗ 0 = 12 + 𝑎 ⃗. 𝑏 ⃗ + 𝑐 ⃗. 𝑎 ⃗ 0 = 1 + 𝑎 ⃗. 𝑏 ⃗ + 𝑐 ⃗. 𝑎 ⃗ 𝑎 ⃗. 𝑏 ⃗ + 𝑐 ⃗. 𝑎 ⃗ = −1 Also, 𝒃 ⃗ . (𝒂 ⃗ + 𝒃 ⃗ + 𝒄 ⃗) = 𝑏 ⃗ . 𝑎 ⃗ + 𝑏 ⃗. 𝑏 ⃗ + 𝑏 ⃗ . 𝑐 ⃗ 𝑏 ⃗ . 0 ⃗ = 𝑏 ⃗. 𝑎 ⃗ + 𝑏 ⃗. 𝑏 ⃗ + 𝑏 ⃗. 𝑐 ⃗ 0 = 𝒃 ⃗. 𝒂 ⃗ + 𝑏 ⃗. 𝑏 ⃗ + 𝑏 ⃗. 𝑐 ⃗ 0 = 𝒂 ⃗. 𝒃 ⃗ + 𝒃 ⃗. 𝒃 ⃗ + 𝑏 ⃗. 𝑐 ⃗ 0 = 𝑎 ⃗. 𝑏 ⃗ + |𝒃 ⃗ |2 + 𝑏 ⃗. 𝑐 ⃗ 0 = 𝑎 ⃗. 𝑏 ⃗ + 42 + 𝑏 ⃗ . 𝑐 ⃗ 0 = 𝑎 ⃗. 𝑏 ⃗ + 16 + 𝑏 ⃗ . 𝑐 ⃗ 𝑎 ⃗. 𝑏 ⃗ + 𝑏 ⃗. 𝑐 ⃗ = −16 Also 𝒄 ⃗ . (𝒂 ⃗+ 𝒃 ⃗ + 𝒄 ⃗) = 𝑐 ⃗ . 𝑎 ⃗ + 𝑐 ⃗ . 𝑏 ⃗ + 𝑐 ⃗ . 𝑐 ⃗ 𝑐 ⃗. 0 ⃗ = 𝑐 ⃗. 𝑎 ⃗ + 𝑐 ⃗. 𝑏 ⃗ + 𝑐 ⃗. 𝑐 ⃗ 0 = 𝑐 ⃗. 𝑎 ⃗ + 𝒄 ⃗. 𝒃 ⃗ + 𝑐 ⃗. 𝑐 ⃗ 0 = 𝑐 ⃗. 𝑎 ⃗ + 𝒃 ⃗. 𝒄 ⃗ + 𝒄 ⃗. 𝒄 ⃗ 0 = 𝑐 ⃗. 𝑎 ⃗ + 𝑏 ⃗. 𝑐 ⃗ + |𝒄 ⃗ |2 0 = 𝑐 ⃗. 𝑎 ⃗ + 𝑏 ⃗ . 𝑐 ⃗ + 22 0 = 𝑐 ⃗. 𝑎 ⃗ + 𝑏 ⃗ . 𝑐 ⃗ + 4 𝑐 ⃗. 𝑎 ⃗ + 𝑏 ⃗. 𝑐 ⃗ = −4 Adding (1), (2) and (3), (𝒂 ⃗. 𝒃 ⃗ + 𝒄 ⃗. 𝒂 ⃗) + (𝒂 ⃗. 𝒃 ⃗ + 𝒃 ⃗. 𝒄 ⃗) + (𝒄 ⃗. 𝒂 ⃗ + 𝒃 ⃗. 𝒄 ⃗) = −1 + (–16) + (–4) 2𝑎 ⃗. 𝑏 ⃗ + 2𝑐 ⃗. 𝑎 ⃗ + 2𝑏 ⃗. 𝑐 ⃗ = −21 2(𝑎 ⃗. 𝑏 ⃗ + 𝑏. 𝑐 ⃗ + 𝑐 ⃗. 𝑎 ⃗) = −21 𝑎 ⃗. 𝑏 ⃗ + 𝑏 ⃗. 𝑐 ⃗ + 𝑐 ⃗. 𝑎 ⃗ = (−21)/2 Therefore, 𝝁 = 𝒂 ⃗. 𝒃 ⃗ + 𝒃 ⃗. 𝒄 ⃗ + 𝒄 ⃗ . 𝒂 ⃗ = (−𝟐𝟏)/𝟐

Go Ad-free
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.