Example 20 - Show |a + b| < |a| + |b| (triangle inequality)

Example 20 - Chapter 10 Class 12 Vector Algebra - Part 2
Example 20 - Chapter 10 Class 12 Vector Algebra - Part 3

Something went wrong!

The video couldn't load due to a technical hiccup.
But don't worry — our team is already on it, and we're working hard to get it back up ASAP.

Thanks for bearing with us!

Share on WhatsApp

Transcript

Example 20 For any two vectors 𝑎 ⃗ and 𝑏 ⃗ , we always have |𝑎 ⃗ + 𝑏 ⃗| ≤ |𝑎 ⃗| + |𝑏 ⃗| (triangle inequality).To Prove: |𝑎 ⃗ + 𝑏 ⃗| ≤ |𝑎 ⃗| + |𝑏 ⃗| We first prove trivially, |𝑎 ⃗ + 𝑏 ⃗| = |0 ⃗" + " 𝑏 ⃗ | = |𝑏 ⃗ | "|" 𝑎 ⃗"| + |" 𝑏 ⃗"|" = 0 + |𝑏 ⃗ | = |𝑏 ⃗ | |𝑎 ⃗ + 𝑏 ⃗| = |𝑎 ⃗+0 ⃗ | = |𝑎 ⃗ | "|" 𝑎 ⃗"| + |" 𝑏 ⃗"|" = |𝑎 ⃗ | + 0 = |𝑎 ⃗ | Therefore, the inequality |𝑎 ⃗ + 𝑏 ⃗| ≤ |𝑎 ⃗| + |𝑏 ⃗| is satisfied trivially. Let us assume 𝒂 ⃗ ≠ 𝟎 ⃗ & 𝒃 ⃗ ≠ 𝟎 ⃗ |𝑎 ⃗ + 𝑏 ⃗|2 = (𝑎 ⃗ + 𝑏 ⃗) . (𝑎 ⃗ + 𝑏 ⃗) = 𝑎 ⃗ . 𝑎 ⃗ + 𝑎 ⃗ . 𝑏 ⃗ + 𝒃 ⃗ . 𝒂 ⃗ + 𝑏 ⃗. 𝑏 ⃗ = 𝑎 ⃗ . 𝑎 ⃗ + 𝑎 ⃗ . 𝑏 ⃗ + 𝒂 ⃗ . 𝒃 ⃗ + 𝑏 ⃗. 𝑏 ⃗ = 𝒂 ⃗ . 𝒂 ⃗ + 2𝑎 ⃗. 𝑏 ⃗ + 𝒃 ⃗. 𝒃 ⃗ = |𝒂 ⃗|2 + 2𝑎 ⃗. 𝑏 ⃗ + |𝒃 ⃗|2 = |𝑎 ⃗|2 + 2|𝒂 ⃗||𝒃 ⃗| cos θ + |𝑏 ⃗|2 Thus, |𝑎 ⃗ + 𝑏 ⃗|2 = |𝑎 ⃗|2 + 2|𝑎 ⃗||𝑏 ⃗| cos θ + |𝑏 ⃗|2 (Using prop : 𝑎 ⃗. 𝑎 ⃗ = |𝑎 ⃗|2) (Using prop : 𝑎 ⃗. 𝑎 ⃗ = |𝑎 ⃗|2) We know that cos θ ≤ 1 Multiplying 2|𝑎 ⃗||𝑏 ⃗| on both sides 2|𝒂 ⃗||𝒃 ⃗| cos θ ≤ 2|𝒂 ⃗||𝒃 ⃗| Adding |𝑎 ⃗|2 + |𝑏 ⃗|2 on both sides, |𝒂 ⃗|2 + |𝒃 ⃗|2 + 2|𝒂 ⃗||𝒃 ⃗| cos θ ≤ |𝑎 ⃗|2 + |𝑏 ⃗|2 + 2 |𝑎 ⃗| |𝑏 ⃗| |𝒂 ⃗ + 𝒃 ⃗|2 ≤ (|𝑎 ⃗| + |𝑏 ⃗|) 2 Taking square root both sides |𝑎 ⃗ + 𝑏 ⃗| ≤ (|𝑎 ⃗| + |𝑏 ⃗|) Hence proved.

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo