Ex 10.2, 1 - Compute magnitude of a = i + j + k, b = 2i -7j - 3k

Ex 10.2, 1 - Chapter 10 Class 12 Vector Algebra - Part 2

  1. Chapter 10 Class 12 Vector Algebra
  2. Serial order wise

Transcript

Ex 10.2, 1 Compute the magnitude of the following vectors: ๐‘Ž โƒ— = ๐‘– ฬ‚ + ๐‘— ฬ‚ + ๐‘˜ ฬ‚, ๐‘ โƒ—= 2๐‘– ฬ‚ โˆ’ 7๐‘— ฬ‚ โ€“ 3๐‘˜ ฬ‚, ๐‘ โƒ— = 1/โˆš3 ๐‘– ฬ‚ + 1/โˆš3 ๐‘— ฬ‚ โˆ’ 1/โˆš3 ๐‘˜ ฬ‚๐‘Ž โƒ— = ๐‘– ฬ‚ + ๐‘— ฬ‚ + ๐‘˜ ฬ‚ = 1๐‘– ฬ‚ + 1๐‘— ฬ‚ + 1๐‘˜ ฬ‚ Magnitude of ๐‘Ž โƒ— = โˆš(12+12+12) |๐‘Ž โƒ— | = โˆš3 โˆด Magnitude of ๐‘Ž โƒ— = โˆš3 ๐‘ โƒ— = 2๐‘– ฬ‚ โ€“ 7๐‘— ฬ‚ โ€“ 3๐‘˜ ฬ‚ Magnitude of ๐‘ โƒ— = โˆš(22+(โˆ’7)2+(โˆ’3)2) |๐‘ โƒ— | = โˆš(4+49+9) = โˆš62 โˆด Magnitude of ๐‘ โƒ— = โˆš62 ๐‘ โƒ— = 1/โˆš3 ๐‘– ฬ‚ + 1/โˆš3 ๐‘— ฬ‚ โˆ’ 1/โˆš3 ๐‘˜ ฬ‚ Magnitude of ๐‘ โƒ— = โˆš((1/โˆš3)^2+(1/โˆš3)^2+((โˆ’1)/โˆš3)^2 ) |๐‘ โƒ— | = โˆš(1/3+1/3+1/3) = โˆš(3/3) = โˆš1 = 1 โˆด Magnitude of ๐‘ โƒ— = 1

About the Author

Davneet Singh's photo - Teacher, Engineer, Marketer
Davneet Singh
Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 10 years. He provides courses for Maths and Science at Teachoo.