
Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Ex 10.2
Ex 10.2, 2
Ex 10.2, 3 Important
Ex 10.2, 4
Ex 10.2, 5 Important
Ex 10.2, 6
Ex 10.2, 7 Important
Ex 10.2, 8
Ex 10.2, 9
Ex 10.2, 10 Important
Ex 10.2, 11 Important
Ex 10.2, 12 You are here
Ex 10.2, 13 Important
Ex 10.2, 14
Ex 10.2, 15 Important
Ex 10.2, 16
Ex 10.2, 17 Important
Ex 10.2, 18 (MCQ) Important
Ex 10.2, 19 (MCQ) Important
Last updated at May 29, 2023 by Teachoo
Ex 10.2, 12 Find the direction cosines of the vector 𝑖 ̂ + 2𝑗 ̂ + 3𝑘 ̂ . Let 𝑎 ⃗ = 𝑖 ̂ + 2𝑗 ̂ + 3𝑘 ̂ = 1𝑖 ̂ + 2𝑗 ̂ + 3𝑘 ̂ Direction ratios are a = 1, b = 2, c = 3 Magnitude of 𝑎 ⃗ = √(12+2^2+3^2 ) |𝑎 ⃗ | = √(1+4+9) = √14 Direction cosines are (𝑎/|𝑎 ⃗ | ,𝑏/|𝑎 ⃗ | ,𝑐/|𝑎 ⃗ | ) Direction cosines of 𝑎 ⃗ = (𝟏/√𝟏𝟒,𝟐/√𝟏𝟒,𝟑/√𝟏𝟒)