Solve all your doubts with Teachoo Black (new monthly pack available now!)

Ex 10.2

Ex 10.2, 1

Ex 10.2, 2

Ex 10.2, 3 Important

Ex 10.2, 4

Ex 10.2, 5 Important

Ex 10.2, 6

Ex 10.2, 7 Important

Ex 10.2, 8

Ex 10.2, 9

Ex 10.2, 10 Important

Ex 10.2, 11 Important

Ex 10.2, 12

Ex 10.2, 13 Important

Ex 10.2, 14

Ex 10.2, 15 Important

Ex 10.2, 16 You are here

Ex 10.2, 17 Important

Ex 10.2, 18 (MCQ) Important

Ex 10.2, 19 (MCQ) Important

Last updated at April 21, 2021 by Teachoo

Ex 10.2, 16 Find the position vector of the mid point of the vector joining the points P(2, 3, 4) and Q(4, 1, β2). P(2, 3, 4) , Q(4, 1, β2) Let the midpoint of PQ be R. Position vector of P = (2 β 0) π Μ + (3 β 0) π Μ + (4 β 0) π Μ (ππ) β = 2π Μ + 3π Μ + 4π Μ Position vector of Q = (4 β 0) π Μ + (1 β 0) π Μ + (β2 β 0) π Μ (ππ) β = 4π Μ + 1π Μ β 2π Μ Position vector of R = ((πΆπΈ) β + (πΆπ·) β)/π (ππ ) β = ((4π Μ + 1π Μ β 2π Μ ) + (2π Μ + 3π Μ + 4π Μ))/2 (ππ ) β = ((4 + 2) π Μ + (1 + 3) π Μ + (β2 + 4)π Μ)/2 (ππ ) β = (6π Μ + 4π Μ + 2π Μ)/2 (ππ ) β = (2(3π Μ + 2π Μ + π Μ))/2 (ππ ) β = ππ Μ+ππ Μ+π Μ Therefore, position vector of midpoint of PQ is 3π Μ + 2π Μ + π Μ