Three vectors a, b and c satisfy the condition a + b + c = 0. Evaluate - Examples

part 2 - Example 29 - Examples - Serial order wise - Chapter 10 Class 12 Vector Algebra
part 3 - Example 29 - Examples - Serial order wise - Chapter 10 Class 12 Vector Algebra

  part 4 - Example 29 - Examples - Serial order wise - Chapter 10 Class 12 Vector Algebra

part 5 - Example 29 - Examples - Serial order wise - Chapter 10 Class 12 Vector Algebra part 6 - Example 29 - Examples - Serial order wise - Chapter 10 Class 12 Vector Algebra part 7 - Example 29 - Examples - Serial order wise - Chapter 10 Class 12 Vector Algebra

Share on WhatsApp

Transcript

Example 29 (Method 1) Three vectors 𝑎 ⃗, 𝑏 ⃗ and 𝑐 ⃗ satisfy the condition 𝑎 ⃗ + 𝑏 ⃗ + 𝑐 ⃗ = 0 ⃗ . Evaluate the quantity μ = 𝑎 ⃗ ⋅𝑏 ⃗ + 𝑏 ⃗ ⋅ 𝑐 ⃗ + 𝑐 ⃗ ⋅ 𝑎 ⃗, if |𝑎 ⃗|=1, |𝑏 ⃗|= 4 and |c ⃗|= 2.Given |𝑎 ⃗|=1, |𝑏 ⃗|= 4 and |c ⃗|= 2 Also, 𝑎 ⃗ + 𝑏 ⃗ + 𝑐 ⃗ = 0 ⃗ So, |𝒂 ⃗" + " 𝒃 ⃗" + " 𝒄 ⃗ | = |𝟎 ⃗ | = 0 Now, |𝒂 ⃗+𝒃 ⃗+𝒄 ⃗ |2 = (𝒂 ⃗ + 𝒃 ⃗ + 𝒄 ⃗) . (𝒂 ⃗ + 𝒃 ⃗ + 𝒄 ⃗) = 𝑎 ⃗. 𝑎 ⃗ + 𝑎 ⃗ . 𝑏 ⃗ + 𝑎 ⃗ . 𝑐 ⃗ + 𝑏 ⃗ . 𝑎 ⃗ + 𝑏 ⃗ . 𝑏 ⃗ + 𝑏 ⃗ . 𝑐 ⃗ + 𝑐 ⃗ . 𝑎 ⃗ + 𝑐 ⃗ . 𝑏 ⃗ + 𝑐 ⃗ . 𝑐 ⃗ = 𝑎 ⃗. 𝑎 ⃗ + 𝑎 ⃗ . 𝑏 ⃗ + 𝒄 ⃗ . 𝒂 ⃗ + 𝒂 ⃗ . 𝒃 ⃗ + 𝑏 ⃗ . 𝑏 ⃗ + 𝑏 ⃗ . 𝑐 ⃗ + 𝑎 ⃗ . 𝑐 ⃗ + 𝒃 ⃗ . 𝒄 ⃗ + 𝑐 ⃗ . 𝑐 ⃗ = 𝑎 ⃗ . 𝑎 ⃗ + 𝑏 ⃗ . 𝑏 ⃗ + 𝑐 ⃗ . 𝑐 ⃗ + 2𝑎 ⃗. 𝑏 ⃗ + 2𝑏 ⃗. 𝑐 ⃗ + 2𝑐 ⃗. 𝑎 ⃗ = 𝒂 ⃗ . 𝒂 ⃗ + 𝒃 ⃗ . 𝒃 ⃗ + 𝒄 ⃗ . 𝒄 ⃗ + 2(𝑎 ⃗. 𝑏 ⃗ + 𝑏 ⃗. 𝑐 ⃗ + 𝑐 ⃗. 𝑎 ⃗) = |𝒂 ⃗ |𝟐 + |𝒃 ⃗ |𝟐 + |𝒄 ⃗ |𝟐 + 2 (𝑎 ⃗. 𝑏 ⃗ + 𝑏 ⃗. 𝑐 ⃗ + 𝑐 ⃗ . 𝑎 ⃗) = 12 + 42 + 22 + 2(𝑎 ⃗. 𝑏 ⃗ + 𝑏 ⃗. 𝑐 ⃗ + 𝑐 ⃗. 𝑎 ⃗) = 1 + 16 + 4 + 2(𝑎 ⃗. 𝑏 ⃗ + 𝑏 ⃗. 𝑐 ⃗ + 𝑐 ⃗. 𝑎 ⃗) = 21 + 2 (𝒂 ⃗. 𝒃 ⃗ + 𝒃 ⃗. 𝒄 ⃗ + 𝒄 ⃗. 𝒂 ⃗) So, |𝑎 ⃗+𝑏 ⃗+𝑐 ⃗ |2 = 21 + 2 (𝑎 ⃗. 𝑏 ⃗ + 𝑏 ⃗. 𝑐 ⃗ + 𝑐 ⃗. 𝑎 ⃗) Now, given that |𝒂 ⃗" + " 𝒃 ⃗" + " 𝒄 ⃗ | = 0 |𝑎 ⃗" + " 𝑏 ⃗" + " 𝑐 ⃗ |2 = 0 21 + 2 (𝒂 ⃗. 𝒃 ⃗ + 𝒃 ⃗. 𝒄 ⃗ + 𝒄 ⃗. 𝒂 ⃗) = 0 2(𝑎 ⃗. 𝑏 ⃗ + 𝑏 ⃗. 𝑐 ⃗ + 𝑐 ⃗. 𝑎 ⃗) = −21 (𝑎 ⃗. 𝑏 ⃗ + 𝑏 ⃗. 𝑐 ⃗ + 𝑐 ⃗. 𝑎 ⃗) = (−21)/2 Therefore, 𝝁 = 𝒂 ⃗. 𝒃 ⃗ + 𝒃 ⃗. 𝒄 ⃗ + 𝒄 ⃗ . 𝒂 ⃗ = (−𝟐𝟏)/𝟐 Example 29 (Method 2) Three vectors 𝑎 ⃗, 𝑏 ⃗ and 𝑐 ⃗ satisfy the condition 𝑎 ⃗ + 𝑏 ⃗ + 𝑐 ⃗ = 0 ⃗ . Evaluate the quantity μ = 𝑎 ⃗ ⋅𝑏 ⃗ + 𝑏 ⃗ ⋅ 𝑐 ⃗ + 𝑐 ⃗ ⋅ 𝑎 ⃗, if |𝑎 ⃗|=1, |𝑏 ⃗|= 4 and |c ⃗|= 2.Given |𝑎 ⃗| = 1, |𝑏 ⃗|= 4 and |c ⃗|= 2 Also, ( 𝑎 ⃗ + 𝑏 ⃗ + 𝑐 ⃗ ) = 0 ⃗ Now, 𝒂 ⃗ . (𝒂 ⃗ + 𝒃 ⃗ + 𝒄 ⃗) = 𝑎 ⃗ . 𝑎 ⃗ + 𝑎 ⃗. 𝑏 ⃗ + 𝑎 ⃗ . 𝑐 ⃗ 𝑎 ⃗ . 0 ⃗ = 𝑎 ⃗. 𝑎 ⃗ + 𝑎 ⃗. 𝑏 ⃗ + 𝑎 ⃗. 𝑐 ⃗ 0 = 𝒂 ⃗. 𝒂 ⃗ + 𝑎 ⃗. 𝑏 ⃗ + 𝑎 ⃗. 𝑐 ⃗ 0 ⃗ = |𝒂 ⃗ |𝟐 + 𝑎 ⃗. 𝑏 ⃗ + 𝒂 ⃗. 𝒄 ⃗ (Using prop : 𝑎 ⃗ . 𝑎 ⃗ = |𝑎 ⃗ |2 ) 0 ⃗ = |𝑎 ⃗ |2 + 𝑎 ⃗. 𝑏 ⃗ + 𝒄 ⃗. 𝒂 ⃗ 0 = 12 + 𝑎 ⃗. 𝑏 ⃗ + 𝑐 ⃗. 𝑎 ⃗ 0 = 1 + 𝑎 ⃗. 𝑏 ⃗ + 𝑐 ⃗. 𝑎 ⃗ 𝑎 ⃗. 𝑏 ⃗ + 𝑐 ⃗. 𝑎 ⃗ = −1 Also, 𝒃 ⃗ . (𝒂 ⃗ + 𝒃 ⃗ + 𝒄 ⃗) = 𝑏 ⃗ . 𝑎 ⃗ + 𝑏 ⃗. 𝑏 ⃗ + 𝑏 ⃗ . 𝑐 ⃗ 𝑏 ⃗ . 0 ⃗ = 𝑏 ⃗. 𝑎 ⃗ + 𝑏 ⃗. 𝑏 ⃗ + 𝑏 ⃗. 𝑐 ⃗ 0 = 𝒃 ⃗. 𝒂 ⃗ + 𝑏 ⃗. 𝑏 ⃗ + 𝑏 ⃗. 𝑐 ⃗ 0 = 𝒂 ⃗. 𝒃 ⃗ + 𝒃 ⃗. 𝒃 ⃗ + 𝑏 ⃗. 𝑐 ⃗ 0 = 𝑎 ⃗. 𝑏 ⃗ + |𝒃 ⃗ |2 + 𝑏 ⃗. 𝑐 ⃗ 0 = 𝑎 ⃗. 𝑏 ⃗ + 42 + 𝑏 ⃗ . 𝑐 ⃗ 0 = 𝑎 ⃗. 𝑏 ⃗ + 16 + 𝑏 ⃗ . 𝑐 ⃗ 𝑎 ⃗. 𝑏 ⃗ + 𝑏 ⃗. 𝑐 ⃗ = −16 Also 𝒄 ⃗ . (𝒂 ⃗+ 𝒃 ⃗ + 𝒄 ⃗) = 𝑐 ⃗ . 𝑎 ⃗ + 𝑐 ⃗ . 𝑏 ⃗ + 𝑐 ⃗ . 𝑐 ⃗ 𝑐 ⃗. 0 ⃗ = 𝑐 ⃗. 𝑎 ⃗ + 𝑐 ⃗. 𝑏 ⃗ + 𝑐 ⃗. 𝑐 ⃗ 0 = 𝑐 ⃗. 𝑎 ⃗ + 𝒄 ⃗. 𝒃 ⃗ + 𝑐 ⃗. 𝑐 ⃗ 0 = 𝑐 ⃗. 𝑎 ⃗ + 𝒃 ⃗. 𝒄 ⃗ + 𝒄 ⃗. 𝒄 ⃗ 0 = 𝑐 ⃗. 𝑎 ⃗ + 𝑏 ⃗. 𝑐 ⃗ + |𝒄 ⃗ |2 0 = 𝑐 ⃗. 𝑎 ⃗ + 𝑏 ⃗ . 𝑐 ⃗ + 22 0 = 𝑐 ⃗. 𝑎 ⃗ + 𝑏 ⃗ . 𝑐 ⃗ + 4 𝑐 ⃗. 𝑎 ⃗ + 𝑏 ⃗. 𝑐 ⃗ = −4 Adding (1), (2) and (3), (𝒂 ⃗. 𝒃 ⃗ + 𝒄 ⃗. 𝒂 ⃗) + (𝒂 ⃗. 𝒃 ⃗ + 𝒃 ⃗. 𝒄 ⃗) + (𝒄 ⃗. 𝒂 ⃗ + 𝒃 ⃗. 𝒄 ⃗) = −1 + (–16) + (–4) 2𝑎 ⃗. 𝑏 ⃗ + 2𝑐 ⃗. 𝑎 ⃗ + 2𝑏 ⃗. 𝑐 ⃗ = −21 2(𝑎 ⃗. 𝑏 ⃗ + 𝑏. 𝑐 ⃗ + 𝑐 ⃗. 𝑎 ⃗) = −21 𝑎 ⃗. 𝑏 ⃗ + 𝑏 ⃗. 𝑐 ⃗ + 𝑐 ⃗. 𝑎 ⃗ = (−21)/2 Therefore, 𝝁 = 𝒂 ⃗. 𝒃 ⃗ + 𝒃 ⃗. 𝒄 ⃗ + 𝒄 ⃗ . 𝒂 ⃗ = (−𝟐𝟏)/𝟐

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo