Ex 12.1

Ex 12.1, 1

Ex 12.1, 2

Ex 12.1, 3

Ex 12.1, 4 Important

Ex 12.1, 5

Ex 12.1, 6 Important

Ex 12.1, 7

Ex 12.1, 8 Important

Ex 12.1, 9

Ex 12.1,10 Important

Ex 12.1, 11

Ex 12.1, 12

Ex 12.1, 13

Ex 12.1, 14 Important

Ex 12.1, 15 Important

Ex 12.1, 16

Ex 12.1, 17 Important

Ex 12.1, 18

Ex 12.1, 19 Important

Ex 12.1, 20

Ex 12.1, 21 Important

Ex 12.1, 22 Important

Ex 12.1, 23

Ex 12.1, 24

Ex 12.1, 25 Important

Ex 12.1, 26

Ex 12.1, 27

Ex 12.1, 28 Important

Ex 12.1, 29

Ex 12.1, 30 Important

Ex 12.1, 31

Ex 12.1, 32 Important You are here

Last updated at May 7, 2024 by Teachoo

Ex 12.1, 32 If f(x) = {█(mx2+n, x<0@nx+m 0≤x≤1@nx3+m, x>1)┤ . For what integers m and n does lim┬(x→0) f(x) and lim┬(x→1) f(x) exist? Given limit exists at x = 0 and x = 1 At x = 0 Limit exists at x = 0 if Left hand limit = Right hand limit If f(x) = {█(mx2+n, x<0@nx+m 0≤x≤1@nx3+m, x>1)┤ LHL at x → 0 lim┬(x→0^− ) f(x) = lim┬(h→0) f(0 − h) = lim┬(h→0) f(−h) = lim┬(h→0) mh^2+n = m(0)2 + n = n RHL at x → 0 lim┬(x→0^+ ) f(x) = lim┬(h→0) f(0 + h) = lim┬(h→0) f (h) = lim┬(h→0) 𝑛ℎ+𝑚 = n(0) + m = m Since LHL = RHL ∴ m = n So, lim┬(x→0) f(x) exists if m = n Now, Limit exists at x = 1 Thefore, Left hand limit = Right hand limit f(x) = {█(mx2+n, x<0@nx+m 0≤x≤1@nx3+m, x>1)┤ LHL at x → 1 lim┬(x→1^− ) f(x) = lim┬(h→0) f(1 − h) = lim┬(h→0) 𝑛(1−ℎ)+𝑚 = n(1 – 0) + m = n + m RHL at x → 1 lim┬(x→1^+ ) f(x) = lim┬(h→0) f(1 + h) = lim┬(h→0) 𝑛(1+ℎ)^3+𝑚 = n(1 + 0)3 + m = n + m Since LHL = RHL m + n = m + n But, this is always true So, lim┬(x→1) f(x) exists at all integral values of m & n