Get live Maths 1-on-1 Classs - Class 6 to 12

Ex 13.1

Ex 13.1, 1

Ex 13.1, 2

Ex 13.1, 3

Ex 13.1, 4 Important

Ex 13.1, 5

Ex 13.1, 6 Important

Ex 13.1, 7

Ex 13.1, 8 Important

Ex 13.1, 9

Ex 13.1,10 Important

Ex 13.1, 11

Ex 13.1, 12

Ex 13.1, 13

Ex 13.1, 14 Important

Ex 13.1, 15 Important

Ex 13.1, 16

Ex 13.1, 17 Important

Ex 13.1, 18

Ex 13.1, 19 Important

Ex 13.1, 20

Ex 13.1, 21 Important

Ex 13.1, 22 Important

Ex 13.1, 23

Ex 13.1, 24

Ex 13.1, 25 Important

Ex 13.1, 26

Ex 13.1, 27

Ex 13.1, 28 Important

Ex 13.1, 29

Ex 13.1, 30 Important

Ex 13.1, 31

Ex 13.1, 32 Important You are here

Last updated at March 30, 2023 by Teachoo

Ex 13.1, 32 If f(x) = {█(mx2+n, x<[email protected]+m 0≤x≤[email protected]+m, x>1)┤ . For what integers m and n does lim┬(x→0) f(x) and lim┬(x→1) f(x) exist? Given limit exists at x = 0 and x = 1 At x = 0 Limit exists at x = 0 if Left hand limit = Right hand limit If f(x) = {█(mx2+n, x<[email protected]+m 0≤x≤[email protected]+m, x>1)┤ LHL at x → 0 lim┬(x→0^− ) f(x) = lim┬(h→0) f(0 − h) = lim┬(h→0) f(−h) = lim┬(h→0) mh^2+n = m(0)2 + n = n RHL at x → 0 lim┬(x→0^+ ) f(x) = lim┬(h→0) f(0 + h) = lim┬(h→0) f (h) = lim┬(h→0) 𝑛ℎ+𝑚 = n(0) + m = m Since LHL = RHL ∴ m = n So, lim┬(x→0) f(x) exists if m = n Now, Limit exists at x = 1 Thefore, Left hand limit = Right hand limit f(x) = {█(mx2+n, x<[email protected]+m 0≤x≤[email protected]+m, x>1)┤ LHL at x → 1 lim┬(x→1^− ) f(x) = lim┬(h→0) f(1 − h) = lim┬(h→0) 𝑛(1−ℎ)+𝑚 = n(1 – 0) + m = n + m RHL at x → 1 lim┬(x→1^+ ) f(x) = lim┬(h→0) f(1 + h) = lim┬(h→0) 𝑛(1+ℎ)^3+𝑚 = n(1 + 0)3 + m = n + m Since LHL = RHL m + n = m + n But, this is always true So, lim┬(x→1) f(x) exists at all integral values of m & n